Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To save dolphin’s dorsal fin experts combine medical technology and teamwork

20.10.2004


Dolphin Quest enlists University of Pittsburgh specialist to develop custom ’scaffold’ for tissue’s repair; ’Liko is one lucky dolphin’


Dolphin Quest training director George Biedenbach with Liko


Liko in his sling soon after his surgery and application of extracellular matrix treatment in July.



An expert team of marine mammal veterinarians, medical researchers, cosmetic surgeons and dolphin trainers recently joined forces to apply the latest advances in human regenerative medicine in an attempt to restore a bottlenose dolphin’s damaged dorsal fin.

The procedure on Liko, a three-year-old male dolphin at Dolphin Quest on Hawaii’s Big Island, took place on July 30 and marked the first-ever marine mammal application of extracellular matrix tissue repair. Liko (pronounced Lee-ko) continues to undergo pioneering veterinary light emitting diode (LED ) therapy to stimulate tissue growth and regeneration in his injured fin.


Liko sustained a tear at the base of his dorsal (top) fin, likely in a game of "chase" with his dolphin cohorts. While wild dolphins have been observed with similar and more severe lacerations that can result in eventual loss of the dorsal fin, Dolphin Quest veterinarians organized the ground-breaking procedure in an effort to keep as much of Liko’s dorsal fin intact as possible. A dolphin’s dorsal fin consists of soft, cartilage-like tissue.

"Liko’s story is a story of medicine with a big heart," said Rae Stone, D.V.M., a Dolphin Quest veterinarian and co-owner. "It shows extraordinary voluntary cooperation across several human medical and veterinary disciplines that has involved numerous experts with cutting-edge technology and specialized experience. Liko is one very lucky young dolphin."

"Liko’s progress has been fantastic and he’s well on his way to healing completely," said Stephen Badylak, D.V.M., M.D., Ph.D., the University of Pittsburgh tissue engineering expert enlisted by Dolphin Quest. "The things we’ve learned working together to save Liko’s dorsal fin will help other dolphins in the future and many, many other animals of all kind, as Liko’s story helps introduce the concept of regenerative medicine to the veterinary field."

The use of extracellular matrix for the repair of soft tissues was developed by Dr. Badylak, research professor in the department of surgery at the University of Pittsburgh School of Medicine and director of the Center for Pre-Clinical Tissue Engineering at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine. Once in place, the matrix, a 3-dimensional scaffold void of cells but with structural and functional proteins still intact, serves to recruit the appropriate cells for tissue remodeling without producing scarring.

The extracellular matrix used in Liko’s procedure was derived from pig urinary bladder and provided by ACellTM Inc., which Dr. Badylak and his team at the University of Pittsburgh custom-designed for Liko in consultation with veterinarians Dr. Stone and Jay Sweeney, V.M.D., Dolphin Quest co-presidents.

A major challenge the team faced was keeping the application in place on the active dolphin in a saltwater lagoon environment for the time it was expected to take for the soft tissue to sufficiently regenerate. The medical team employed a specially designed sling custom-made by Otter Bay Wetsuits to protect the extracellular matrix patch.

Drs. Stone and Sweeney lead the team that performed the procedure, which included Dolphin Quest veterinarian Gregg Levine, D.V.M.; cosmetic surgeon Paul Faringer, M.D., of Kona, Hawaii; veterinary technician Abby Simmons-Byrd, research and development manager for ACell, Inc.; Melyni Worth, Ph.D., of Thor Laser & LED Therapy; and George Biedenbach, director of animal management at Dolphin Quest Hawaii.

Liko’s LED therapy treatments began in September with equipment donated by Dr. Worth. LED wavelengths are longer than laser light and penetrate deeper to increase energy metabolism at the cellular level. Though LED light is three times brighter than the sun, the medical treatment wands are cool to the touch, highly portable and do not damage the skin of dolphins or humans.

Thermal imagery revealed patterns of increased vascular development in Liko’s dorsal fin and more rapid healing following application of localized LED therapy. Human cosmetic surgeon Dr. Faringer performed the initial procedure in July that prepped Liko’s wound for the sequence of fin-saving treatments to follow.

But all agree the most important member of the dolphin’s expert medical team is Liko, himself. The young dolphin’s calm comportment in human care allowed the initial surgery and weeks of groundbreaking intensive regenerative therapies without anesthesia or administration of sedatives.

"An important part of our animal care and training is building a relationship of mutual trust and conditioning our dolphins to being touched and treated by their veterinarians and trainers," said Mr. Biedenbach, Liko’s training director at Dolphin Quest Hawaii. "Liko’s cooperation makes him a key member of his own medical team and has gone a long way to improve his chances of a successful recovery."

"When we first put Liko’s medical team and treatment plan together, we were outwardly hopeful, but harbored some serious doubts that we would be able to save this dolphin’s dorsal fin," said Dr. Stone. "But Liko surprised us all. Today we’re optimistic that his fin will eventually be fully reattached and strong enough to stand up to the rigors of a robust male dolphin lifestyle."

Liko’s dorsal fin continues its remarkable healing as the young dolphin continues to participate in his pioneering regenerative therapies in a quiet lagoon alongside the Hilton Waikoloa Village Resort. Veterinarians are excited by his progress, but caution that Liko still has a ways to go on the road to recovery.

Lisa Rossi | EurekAlert!
Further information:
http://www.dolphinquest.org
http://www.upmc.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>