Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscling in on a deadly cancer

15.10.2004


Mice with kids’ muscle tumors raise hope for new treatments

In a pair of new studies, University of Utah scientists took early but significant steps to fight a particularly deadly childhood muscle cancer by identifying some of the genetic events that cause the disease and then engineering mice that develop the tumors. The genetic events might be targets for new drugs that could be tested on the mice.

The disease, named alveolar rhabdomyosarcoma, "is a very mean childhood cancer," says study leader Mario Capecchi, co-chair of human genetics in the university’s School of Medicine and an investigator with the Howard Hughes Medical Institute. "Once the cancer has spread, 80 percent of the children are likely to die within five years, even with the most aggressive treatment possible, including chemotherapy, surgery and radiation."



Capecchi says the studies provide evidence that the cancer may originate in mature or nearly mature skeletal muscle fibers. That is controversial because satellite stem cells – cells that become new muscle – long have been suspected of giving rise to rhabdomyosarcoma. "If we know where it starts and the cause, you might be able to prevent it, detect it early or develop new treatments based on a better understanding of the biology of the tumor," says Charles Keller, a pediatric cancer specialist and first author of the studies.

During the past 30 years, "there have been dramatic improvements in cure rates for a number of cancers," he adds. "However, the outcome for advanced alveolar rhabdomyosarcoma has remained largely the same for 30 years." Until now, scientists have been unable to breed mice with alveolar rhabdomyosarcoma, so "we understand the initiation and progression of this disease very poorly," Keller says. "This work represents a significant step forward in the understanding of the disease, and puts us on the path toward new therapies" less toxic to patients and better aimed at the cancer.

Keller and Capecchi believe it still will take 10 to 20 years for new treatments to emerge. But, Keller adds, "After 30 years of limited progress, we have our foot in the door." The new studies will be published Nov. 1 in the journal Genes & Development, with one of the studies published online Oct. 15. The studies involved mice, which have a genetic makeup quite similar to humans and thus are used as "models" for study of human diseases.

Co-authors of the studies were University of Utah undergraduate Mark Hansen; Cheryl Coffin, a physician in pediatric pathology; Benjamin Arenkiel, a graduate student in human genetics; and Harvard Medical School’s Nabeel El-Bardeesy and Ronald DePinho.

A Mutant Fusion Gene’s Role in Muscle Cancer

Childhood cancers are rare because cancer is primarily age-related. The American Cancer Society says that out of 1.37 million new cancers in the United States this year, 9,200 would occur in children age 14 or younger, and 313 of those would be rhabdomyosarcomas.

The American Cancer Society says 78 percent of children with cancer survive at least five years. But Keller says five-year survival is a dismal 5 percent to 30 percent – depending on the group studied – among children with alveolar rhabdomyosarcoma, the most severe form of the disease. (Another form, embryonal rhabdomyosarcoma, is more responsive to treatment.)

Capecchi says the cancer causes tumors in various muscles throughout the body, primarily in the legs, arms and shoulders, but also in the back, neck, trunk and even the tongue.

Scientists already knew that 85 to 90 percent of children with alveolar rhabdomyosarcoma have an oncogene – a cancer-causing gene – named Pax3:Fkhr. It is known as a "fusion gene" because it forms when two chromosomes each break into two pieces and then fuse or recombine. The fusion gene includes a piece of Pax3 – which plays a role in forming the muscles, nervous system and head – and piece of Forkhead of Fkhr, a gene that acts as a tumor suppressor to control cell division, which runs amok in cancer. Researchers believe Pax3:Fkhr causes cancer by triggering inappropriate muscle development.

Unraveling the Workings of a Cancer Gene

In their first study, the researchers probed how the Pax3:Fkhr fusion gene affected development of the mouse embryo, muscle formation in the embryo, and muscle growth that occurs after the mouse is born and satellite stem cells give rise to new muscle cells.

They engineered a version of the Pax3 gene that could be converted into a Pax3-Fkhr fusion gene at any stage of embryo development and in any desired cells – a new technology called "conditional mutagenesis." Capecchi says these experiments revealed how the fusion gene turns various genes on or off, interfering with normal muscle development and providing clues to the complex series of steps by which the gene causes alveolar rhabdomyosarcoma. "If you know the steps involved, then you can look at each of them and ask, ’Are there drugs that would specifically interfere with that step,’" he adds.

Keller says muscles are made two ways. As an embryo grows, muscles develop from cells known as somites, which also give rise to bone and skin. Just before birth, muscle starts being made a second way: Muscles made earlier gain added mass because of satellite cells, which are stem cells destined to make muscle.

Rhabdomyosarcomas long were thought to arise in satellite stem cells. Yet when the researchers activated the cancer-causing Pax3:Fkhr gene in mouse muscle satellite stem cells, the embryos didn’t develop tumors. That makes satellite cells an unlikely source of the cancer.

Scientists who reviewed the paper argued the cancer could still originate in rare subtypes of muscle stem cells. Keller and Capecchi plan to test those cells. But Keller says that when the Pax3:Fkhr fusion gene was turned on in tens of thousands of satellite stem cells, those cells didn’t become cancerous, so it seems likely the gene must cause cancer by becoming active in some other type of cell.

In the second study’s key finding, mice developed muscle tumors much like the human cancer when Capecchi and Keller did two things. First, they activated the Pax3:Fkhr cancer gene in mature or nearly mature muscle fibers either late in development of mouse embryos or after the mice were born. Second, they inactivated either one of two tumor-suppressor genes – named Trp53 (or p53) and Ink4a/ARF – that normally control cell division.

Recent experiments show nearly all the mice develop muscle cancer when the scientists activate the Pax3:Fkhr cancer gene and deactivate either tumor suppressor gene, Keller says. Mice previously have been created to develop the less deadly embryonal rhabdomyosarcoma muscle cancer, and a rare type, known as pleomorphic rhabdomyosarcoma, but until now, no mouse had developed the highly lethal alveolar rhabdomyosarcoma.

Capecchi says cancer specialists have believed alveolar rhabdomyosarcoma originates in satellite stem cells because the tumors proliferate after birth, when stem cells retain their ability to proliferate but mature muscle fibers normally do not. Also, a number of cancers involve stem cells. So "it’s a big deal for a [mature or nearly mature muscle] cell not be proliferating and then all of a sudden to be able to proliferate" to form tumors, Capecchi adds.

Keller says other researchers previously found that maturing skeletal muscle cells grown in the laboratory can revert to muscle stem cells. The Utah research found that tumors arising from mature or nearly mature muscle in mice have some characteristics of stem cells. That suggests the "primitive-appearing [rhabdomyosarcoma] tumors may be the result of non-primitive [muscle] cells reverting to a primitive state," Keller says.

Mice with rhabdomyosarcoma now can be studied to determine how the cancer arises from mature or nearly mature muscle fibers, and also whether the Pax3:Fkhr fusion gene is required to maintain the cancer or just to get it started.

Mario Capecchi | EurekAlert!
Further information:
http://www.genetics.utah.edu
http://www.hci.utah.edu

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>