Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do we see bacteria

13.10.2004


Understanding how the body’s immune system recognises and responds to microorganisms can be a major step in the development of new therapies against infectious diseases. Towards this aim, a paper just released in the October issue of Embo reports1 discusses the process used by mammals to respond to bacteria such as Helicobacter pylori, Listeria monocytogenes and Streptococcus pneumoniae which are responsible for ulcers, Listeriosis and pneumonia, respectively.
In order to protect against infection it is necessary to detect invading microorganisms/ microbes capable of inducing disease. This is done through the recognition by the immune system of molecules unique to these invading organisms. In bacteria for example, components of their cell walls such as peptidoglycan, a polymer of sugars and peptides which is involved in cells shape and wall integrity, is one such target. The innate immune system is the first line of defence as it can be mobilised almost immediately and have a crucial role in prevention of infection. But the molecules/receptors and the mechanism involved in the recognition and clearance of microrganisms by this part of the immune system are still poorly known. Toll-like receptors (TLRs) are a family of molecules which have recently emerged as key components in the recognition of infectious agents by the innate immune system.

Now, Leonardo Travassos and Ivo G Boneca from the Institute Pasteur, Paris, France together with colleagues from the Federal University of the Rio de Janeiro, Rio de Janeiro, Brasil and the University Paris-Sud, in Orsay, France, found that TLR2, a member of the TRL family seems to recognise lipoteichoic acid (LTA) an important component of the bacteria cell wall, but does not recognize peptidoglycans, a result in clear disagreement with previous work by other groups. The differences found are due, according to Travassos, Boneca and colleagues, to contamination of the bacteria used in earlier research.


Before Travassos, Boneca and colleagues’ work it was believed that peptidoglycans were recognised through two different type of receptors; TRL2, which is present on the surface of cells of the immune system and by a family of molecules found in the intracellular space called nucleotide-binding oligomerization domain (NOD) a redundancy of roles that did not make much sense. What the team of scientists’ results show is that in fact the immune system uses these two recognition systems to target different molecules on the bacteria wall, the recognition mechanisms probably acting synergistically and so leading to a more powerful immune response and higher probability of getting rid of infection.

These are important results as detailed knowledge of the molecules and pathways involved in the control of the immune system during infection and inflammation opens the door to new highly selective therapeutics. Furthermore, the discovery that TRL2 seems to recognise LTA is extremely interesting as LTA only exists in the cell wall of Gram-positive bacteria (so called because they become positively coloured with Gram stain) and the initial steps of the innate immune response against this type of bacteria are still poorly understood. This is of great significance as Gram-positive bacteria are extremely important in clinical infections, for example, just in America, two Gram-positive bacteria -Pneumococcus and Staphylococcus - are responsible for almost 75% of all the antibiotic usage. Piece researched and written by Catarina Amorim catarina.amorim@linacre.ox.ac.uk

Catarina Amorim | alfa
Further information:
http://emboreports.npgjournals.com
http://www.oct.mct.pt

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>