Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do we see bacteria

13.10.2004


Understanding how the body’s immune system recognises and responds to microorganisms can be a major step in the development of new therapies against infectious diseases. Towards this aim, a paper just released in the October issue of Embo reports1 discusses the process used by mammals to respond to bacteria such as Helicobacter pylori, Listeria monocytogenes and Streptococcus pneumoniae which are responsible for ulcers, Listeriosis and pneumonia, respectively.
In order to protect against infection it is necessary to detect invading microorganisms/ microbes capable of inducing disease. This is done through the recognition by the immune system of molecules unique to these invading organisms. In bacteria for example, components of their cell walls such as peptidoglycan, a polymer of sugars and peptides which is involved in cells shape and wall integrity, is one such target. The innate immune system is the first line of defence as it can be mobilised almost immediately and have a crucial role in prevention of infection. But the molecules/receptors and the mechanism involved in the recognition and clearance of microrganisms by this part of the immune system are still poorly known. Toll-like receptors (TLRs) are a family of molecules which have recently emerged as key components in the recognition of infectious agents by the innate immune system.

Now, Leonardo Travassos and Ivo G Boneca from the Institute Pasteur, Paris, France together with colleagues from the Federal University of the Rio de Janeiro, Rio de Janeiro, Brasil and the University Paris-Sud, in Orsay, France, found that TLR2, a member of the TRL family seems to recognise lipoteichoic acid (LTA) an important component of the bacteria cell wall, but does not recognize peptidoglycans, a result in clear disagreement with previous work by other groups. The differences found are due, according to Travassos, Boneca and colleagues, to contamination of the bacteria used in earlier research.


Before Travassos, Boneca and colleagues’ work it was believed that peptidoglycans were recognised through two different type of receptors; TRL2, which is present on the surface of cells of the immune system and by a family of molecules found in the intracellular space called nucleotide-binding oligomerization domain (NOD) a redundancy of roles that did not make much sense. What the team of scientists’ results show is that in fact the immune system uses these two recognition systems to target different molecules on the bacteria wall, the recognition mechanisms probably acting synergistically and so leading to a more powerful immune response and higher probability of getting rid of infection.

These are important results as detailed knowledge of the molecules and pathways involved in the control of the immune system during infection and inflammation opens the door to new highly selective therapeutics. Furthermore, the discovery that TRL2 seems to recognise LTA is extremely interesting as LTA only exists in the cell wall of Gram-positive bacteria (so called because they become positively coloured with Gram stain) and the initial steps of the innate immune response against this type of bacteria are still poorly understood. This is of great significance as Gram-positive bacteria are extremely important in clinical infections, for example, just in America, two Gram-positive bacteria -Pneumococcus and Staphylococcus - are responsible for almost 75% of all the antibiotic usage. Piece researched and written by Catarina Amorim catarina.amorim@linacre.ox.ac.uk

Catarina Amorim | alfa
Further information:
http://emboreports.npgjournals.com
http://www.oct.mct.pt

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>