Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers-led research offers new clues in the genetic mysteries of maize

12.10.2004


Milestone in maize genomics



Rutgers researchers, with the support of the National Science Foundation, have pushed back the frontiers on the genetic nature and history one of the world’s most important crops – corn. This crop dominates agriculture in the United States, where approximately 9 billion bushels are produced annually at a value of $30 billion. Maize (or corn) is also an important dietary staple in much of the third world. Rutgers’ Joachim Messing and his colleagues announced this month discoveries about the inner workings of corn, its origins and evolution, with implications for breeding, genetic engineering and future genomic studies.

"This latest research, conducted with worldwide collaborations, led us to a new understanding of maize that will help enable scientists and farmers to make major improvements in one of the world’s most significant crops and gain new and important insights in plant genomic studies," said Messing, director of the Waksman Institute of Microbiology at Rutgers, The State University of New Jersey. The findings are presented in three papers in the journal Genome Research and one in the Proceedings of the National Academy of Sciences.


The scientists conducted the most comprehensive survey of the maize genome ever performed and established for the first time the genome’s magnitude – approximately 59,000 genes – and the relative position of the genes. This is twice as many as the human genome and the highest number of genes of any genome sequenced to date. Messing emphasized that this survey is only a first step and conducting a whole genome sequence is a priority dictated by nutritional, economic and societal needs.

The research further established that in addition to its immense size, the corn genome is extremely complex due, in part, to positional instability as well as its genetic history. Messing and his colleagues concluded that maize genes are scrambled, having moved around to different locations throughout the genome – an occurrence unheard of in other species, including the human genome. This has important implications for genetic engineering.

"An argument often cited against the introduction of external genes, a common practice in genetic engineering, suggests that it would create an unnatural instability in the genome," said Messing. "With all the maize genes moving around by themselves in nature, perhaps conveying some selective advantage in doing so, this argument is unfounded."

Through sophisticated computational analysis, the researchers concluded that today’s corn is the product of two very closely related ancestral species that no longer exist. About 5 million years ago the species crossed and, in doing so, doubled the number of genes. Through mechanisms not yet revealed, many of these genes were shed and then others duplicated through gene amplification as this process is termed.

When compared to closely related species today, the researchers found that as much as 22 percent of the maize genes could be identified as being different. This was surprising, considering that other close relatives – such as chimpanzees and humans – differ in less than one percent of their genes.

"It looks like significant evolutionary change happened in a relatively short time," said Messing. "Because they are immobile, plants have to adapt to changes more rapidly than animals that can move to escape environmental impacts. Plants are continually faced with a variety of seasonal challenges and assaults by a series of different pests which may well lead to evolution on a fast track."

While the findings offered in the four newly published papers provide exciting, new glimpses into the nature of maize, Messing stressed the need for the completion of a whole genome sequence, a more detailed analysis of gene expression in maize, and a better understanding of its genetic and cellular mechanisms.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>