Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers-led research offers new clues in the genetic mysteries of maize

12.10.2004


Milestone in maize genomics



Rutgers researchers, with the support of the National Science Foundation, have pushed back the frontiers on the genetic nature and history one of the world’s most important crops – corn. This crop dominates agriculture in the United States, where approximately 9 billion bushels are produced annually at a value of $30 billion. Maize (or corn) is also an important dietary staple in much of the third world. Rutgers’ Joachim Messing and his colleagues announced this month discoveries about the inner workings of corn, its origins and evolution, with implications for breeding, genetic engineering and future genomic studies.

"This latest research, conducted with worldwide collaborations, led us to a new understanding of maize that will help enable scientists and farmers to make major improvements in one of the world’s most significant crops and gain new and important insights in plant genomic studies," said Messing, director of the Waksman Institute of Microbiology at Rutgers, The State University of New Jersey. The findings are presented in three papers in the journal Genome Research and one in the Proceedings of the National Academy of Sciences.


The scientists conducted the most comprehensive survey of the maize genome ever performed and established for the first time the genome’s magnitude – approximately 59,000 genes – and the relative position of the genes. This is twice as many as the human genome and the highest number of genes of any genome sequenced to date. Messing emphasized that this survey is only a first step and conducting a whole genome sequence is a priority dictated by nutritional, economic and societal needs.

The research further established that in addition to its immense size, the corn genome is extremely complex due, in part, to positional instability as well as its genetic history. Messing and his colleagues concluded that maize genes are scrambled, having moved around to different locations throughout the genome – an occurrence unheard of in other species, including the human genome. This has important implications for genetic engineering.

"An argument often cited against the introduction of external genes, a common practice in genetic engineering, suggests that it would create an unnatural instability in the genome," said Messing. "With all the maize genes moving around by themselves in nature, perhaps conveying some selective advantage in doing so, this argument is unfounded."

Through sophisticated computational analysis, the researchers concluded that today’s corn is the product of two very closely related ancestral species that no longer exist. About 5 million years ago the species crossed and, in doing so, doubled the number of genes. Through mechanisms not yet revealed, many of these genes were shed and then others duplicated through gene amplification as this process is termed.

When compared to closely related species today, the researchers found that as much as 22 percent of the maize genes could be identified as being different. This was surprising, considering that other close relatives – such as chimpanzees and humans – differ in less than one percent of their genes.

"It looks like significant evolutionary change happened in a relatively short time," said Messing. "Because they are immobile, plants have to adapt to changes more rapidly than animals that can move to escape environmental impacts. Plants are continually faced with a variety of seasonal challenges and assaults by a series of different pests which may well lead to evolution on a fast track."

While the findings offered in the four newly published papers provide exciting, new glimpses into the nature of maize, Messing stressed the need for the completion of a whole genome sequence, a more detailed analysis of gene expression in maize, and a better understanding of its genetic and cellular mechanisms.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>