Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Researchers Identify Key Plant Enzyme That Defends Against Multiple Infections

08.10.2004


Scientists from the University of California, Riverside have identified one of the key enzymes that trigger programmed cell death, an important process plants undergo in fighting off bacterial, fungal or viral infections. The development holds out hope of improving crop yields, which are dependent on plants being able to fend off multiple types of pathogens.



The findings, outlined in a paper titled “VPEg Exhibits a Caspase-like Activity that Contributes to Defense Against Pathogens” were reported in the Sept. 23, online issue of Current Biology, and involve research on the key plant protein, vacuolar processing enzyme or VPEg, in Arabidopsis thaliana, or thale cress, that is required for this process.

Programmed cell death (PCD), which occurs naturally in all multi-cellular organisms, is the regulated elimination of cells that happens during the course of development, as well as in response to bacterial, fungal and viral infection. Caspases are a family of proteases, or enzymes that degrade proteins, which play an essential role in initiating and carrying out programmed cell death in animals.


Caspase-like activities have also been shown to be required for the initiation of programmed cell death in plants, but the genes controlling those activities have not been identified.

Natasha Raikhel, Director of the UCR Center for Plant Cell Biology, and her former postdoctoral researcher, Enrique Rojo, have now shown that this key plant protein contributes to defense against bacterial, fungal and viral pathogens in plants by activating programmed cell death pathways.

They have discovered that mutants lacking this protein have an increased susceptibility to these pathogens. These results have significant influence in the outcome of a diverse set of plant-pathogen interactions and suggest that this key plant protein is likely involved in a variety of processes that range from stress and defense responses to proper development during aging.

This is an important discovery because it demonstrates a previously unknown mechanism through which plants control cell death. “Programmed cell death is a universal process that all multicellular organisms must control throughout growth and development,” explained Raikhel. “Since PCD plays such a central role in a wide variety of physiological processes, the VPE pathway for controlling PCD likely has a huge impact on this process in plants.”

The research, funded by the National Science Foundation, was carried out from 2002-2004 in the Department of Botany and Plant Sciences and the Center for Plant Cell Biology (CEPCEB) at UC Riverside and the Universidad Autónoma de Madrid.

Besides Raikhel and Rojo, UCR co-authors of the Current Biology paper include Clay Carter, Jan Zouhar, Songqin Pan, and Hailing Jin. Co-authors from other institutions include Raquel Martin, Manuel Paneque and Jose Juan Sanchez-Serrano of the Departamento de Genética Molecular de Plantas del Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain; Frederick M Ausubel and Julia Plotnikova of the Department of Genetics at Harvard Medical School and the Department of Molecular Biology at Massachusetts General Hospital, Boston; and Barbara Baker of the Plant Gene Expression Center at UC Berkeley & the U.S. Department of Agriculture.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>