Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Interleukin-6 The ’Holy Grail’ Of Exercise Mediation?

07.10.2004


Call To Rename Class Of Muscle-Derived IL-6 As “Myokines”



For the most of the past century, researchers have searched for a muscle-contraction-induced factor, which mediates some of the exercise effects in other tissues and organs such as the liver and adipose tissue. In their quest for this magic trigger, or class of effectors, it’s been referred to as the “work stimulus,” “work factor” or the “exercise factor.”

Bente Karlund Pedersen, professor of internal medicine at Rigshospitalet and leader of the Muscle Center at the University of Copenhagen, Denmark, and her team are part of that search. They found a cytokine, Interleukin-6, which is produced by contracting muscles and released into the blood, and demonstrated that IL-6 has many biologic roles, including:

  • Activation/inhibition of metabolic genes
  • Induction of lipolysis, or the breakdown of fat
  • Inhibition of insulin resistance, and
  • Suppression of tumor necrosis factor (TNF) production.

In fact, Pedersen says the wide impact of muscle-derived IL-6 not only fulfills all the criteria for this “exercise factor” but that such classes of cytokines should be reclassified as “myokines.” She points out that because of its diverse effects, IL-6 has potential as a therapeutic drug in treating such metabolic disorders as obesity, type 2 diabetes and atherosclerosis.


Many roles and sources prompt additional IL-6 research

Over the years, “increased levels of IL-6 after exercise is remarkably consistent,” Pedersen and a collaborator, Mark A. Febbraio of the Dept. of Physiology at the University of Melbourne, Australia, noted in an article in the FASEB Journal. However, the actual appearance of IL-6 into circulation depends on several factors including exercise intensity, duration and mode. For instance, vigorous rowing doubles the amount of IL-6 in plasma relatively quickly, while in endurance activity IL-6 doesn’t appear until later. Activation of the IL-6 gene seems to be enhanced when muscle glycogen content is low, while carbohydrate supplementation during exercise has been shown to inhibit the release of IL-6 from contracting muscle.

What does seem consistent is that IL-6 originates from the contracting limb and that skeletal muscle cells themselves are the likely source of production. The skeletal muscles seem to produce IL-6 in order to maintain metabolic homeostasis during periods of altered metabolic demand such as muscular exercise or insulin stimulation.

Such a powerful effector has also attracted some negative reaction, but Pedersen notes that IL-6 overall seems to have a “positive metabolic role in health and in the treatment of disease.” For instance high levels of IL-6 have been found in patients with “metabolic syndrome,” which may be explained by the fact that IL-6 is produced in adipose tissue. Similarly, increased levels of TNF-alpha and IL-6 have been observed in obese individuals, smokers and patients with non-insulin-dependent diabetes mellitus but there’s no evidence that either is actually the source of these problems.

Indeed, it’s possible, for instance, that IL-6 expression may be up-regulated in insulin resistant skeletal muscle in an attempt to overcome the impaired glucose uptake. And in other contexts, the current thinking is that IL-6 has primarily anti-inflammatory effects. It is this combination of effects that has prompted such widespread study.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>