Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Is Interleukin-6 The ’Holy Grail’ Of Exercise Mediation?


Call To Rename Class Of Muscle-Derived IL-6 As “Myokines”

For the most of the past century, researchers have searched for a muscle-contraction-induced factor, which mediates some of the exercise effects in other tissues and organs such as the liver and adipose tissue. In their quest for this magic trigger, or class of effectors, it’s been referred to as the “work stimulus,” “work factor” or the “exercise factor.”

Bente Karlund Pedersen, professor of internal medicine at Rigshospitalet and leader of the Muscle Center at the University of Copenhagen, Denmark, and her team are part of that search. They found a cytokine, Interleukin-6, which is produced by contracting muscles and released into the blood, and demonstrated that IL-6 has many biologic roles, including:

  • Activation/inhibition of metabolic genes
  • Induction of lipolysis, or the breakdown of fat
  • Inhibition of insulin resistance, and
  • Suppression of tumor necrosis factor (TNF) production.

In fact, Pedersen says the wide impact of muscle-derived IL-6 not only fulfills all the criteria for this “exercise factor” but that such classes of cytokines should be reclassified as “myokines.” She points out that because of its diverse effects, IL-6 has potential as a therapeutic drug in treating such metabolic disorders as obesity, type 2 diabetes and atherosclerosis.

Many roles and sources prompt additional IL-6 research

Over the years, “increased levels of IL-6 after exercise is remarkably consistent,” Pedersen and a collaborator, Mark A. Febbraio of the Dept. of Physiology at the University of Melbourne, Australia, noted in an article in the FASEB Journal. However, the actual appearance of IL-6 into circulation depends on several factors including exercise intensity, duration and mode. For instance, vigorous rowing doubles the amount of IL-6 in plasma relatively quickly, while in endurance activity IL-6 doesn’t appear until later. Activation of the IL-6 gene seems to be enhanced when muscle glycogen content is low, while carbohydrate supplementation during exercise has been shown to inhibit the release of IL-6 from contracting muscle.

What does seem consistent is that IL-6 originates from the contracting limb and that skeletal muscle cells themselves are the likely source of production. The skeletal muscles seem to produce IL-6 in order to maintain metabolic homeostasis during periods of altered metabolic demand such as muscular exercise or insulin stimulation.

Such a powerful effector has also attracted some negative reaction, but Pedersen notes that IL-6 overall seems to have a “positive metabolic role in health and in the treatment of disease.” For instance high levels of IL-6 have been found in patients with “metabolic syndrome,” which may be explained by the fact that IL-6 is produced in adipose tissue. Similarly, increased levels of TNF-alpha and IL-6 have been observed in obese individuals, smokers and patients with non-insulin-dependent diabetes mellitus but there’s no evidence that either is actually the source of these problems.

Indeed, it’s possible, for instance, that IL-6 expression may be up-regulated in insulin resistant skeletal muscle in an attempt to overcome the impaired glucose uptake. And in other contexts, the current thinking is that IL-6 has primarily anti-inflammatory effects. It is this combination of effects that has prompted such widespread study.

Mayer Resnick | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>