Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team develops nonhuman primate model of smallpox infection

05.10.2004


Scientists have made significant progress in developing an animal model of smallpox that closely resembles human disease, which will be necessary for testing of future vaccines and potential treatments.



The study, published in this week’s online early edition of Proceedings of the National Academy of Sciences, is the first to demonstrate that variola virus, the causative agent of smallpox, can produce lethal disease in monkeys.

Smallpox, a devastating disease, was eradicated in 1979 through the efforts of the World Health Organization (WHO). Currently, infectious variola is known to exist only in two WHO-sanctioned repositories, one in Russia and the other at the Centers for Disease Control and Prevention (CDC) in Atlanta. However, there is concern that undisclosed reference stocks of the virus may exist, and the U.S. population is no longer routinely immunized against the disease. Due to its potential as an agent of bioterrorism, antiviral drugs and an improved smallpox vaccine are urgently needed.


Because the disease no longer occurs naturally, vaccine and drug candidates cannot be tested for their ability to prevent or treat smallpox in humans. Thus, licensing of future medical countermeasures for smallpox will depend upon animal studies. The U.S. Food and Drug Administration (FDA) has established an animal efficacy rule to facilitate the approval of vaccines and drugs for biological agents in cases where efficacy data in humans cannot be obtained.

In 1999, a study group convened by the U.S. Institute of Medicine recommended that variola research be conducted, and a research plan was approved by the WHO to develop an animal model of the disease. Peter B. Jahrling of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) led the research team.

Jahrling and his colleagues exposed 36 cynomolgous monkeys to one of two variola strains, Harper and India 7124. Eight animals were challenged by a combination of aerosol plus intravenous inoculation--four with Harper strain and four with India strain. The remaining 24 animals were exposed only by the intravenous route to varying doses of the virus.

Both variola strains produced severe disease, with almost uniform lethality and end-stage lesions resembling the human disease, in monkeys exposed by the combined route of infection. According to the authors, death usually occurred within six days of inoculation. Similar results were seen in monkeys that received the same dose of either virus by the intravenous route alone.

Having demonstrated that it was possible to achieve lethal infection of primates using variola virus, the team next tried to determine whether lower doses of virus would produce a less accelerated disease course. In order to more closely mimic human smallpox, the animal model would include near uniform mortality, but a longer mean time to death. Using a ten-fold lower dose, however, also resulted in lower mortality overall, so further refinement of the model is indicated.

"Despite its limitations," the authors wrote, "the intravenous variola primate model…has already provided valuable insight into the pathogenesis of this exquisitely adapted human pathogen." In a related article in the same journal, Rubins and her colleagues examined the host gene expression patterns of hemorrhagic smallpox in these animals. Specifically, they documented fluctuations in cellular proliferation, interferon, and viral modulation of the immune response. A better understanding of the disease process that occurs with smallpox infection will aid in the development of diagnostic and therapeutic approaches.

"Aside from the technical accomplishments, what’s notable about these studies is the collaboration between multiple agencies--including the Department of Defense and the academic sector--to address the issues raised in the 1999 Institute of Medicine report on the need to retain live variola virus," said co-author James W. LeDuc of the CDC, where the variola research was conducted. "This report has been the basis for the national smallpox research agenda, and these papers are the first significant publications to come from those efforts."

In addition to Jahrling and LeDuc, the research team included Lisa E. Hensley, John W. Huggins, and Mark J. Martinez of USAMRIID, and Kathleen H. Rubins and David A. Relman of Stanford University.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>