Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving the maize crops

04.10.2004


“The results of the research we have carried out on the genome of viruses, specifically on nucleopolyhedroviruses (NPVs; Baculoviridae) will help to understand how genetic systems evolve. This discovery is of great importance when we take into account that NPVs have shown to have great insecticide potential for the control of agricultural and forestry plagues, above all for the cultivation of maize in countries such as Mexico and Honduras”. This is one of the conclusions of the PhD thesis “Functional importance of genotypic and phenotypic diversity in a Spodoptera frugiperda multiple nucleopolyhedrovirus population” that researcher Oihane Simón De Goñi recently defended at the Public University of Navarre.

How the virus affects the plague

The nucleopolyhedrovirus (NPVs; Baculoviridae) have shown to have great insecticide potential for the control of agricultural and forestry plagues. It involves an infectious virus for insects that cause plagues, the size of which is 2 to 3 micras and which can be found, according to Ms Simón de Goñi, “contaminating a plant leaf which the insect feeds off. This virus is composed of a protein that includes the infectious viruses, known as virions. The larva, on eating the contaminated leaf, ingests the virus which, when it arrives at the digestive tract of the insect, it dissolves the protein surrounding the virions and these are released. Then the virions unite with the epithelial cells and enter the nuclei thereof where they multiply to produce new virions which then infect the cells of other internal tissues of the insect’s body. Thus, the infected cells burst (lysis) and, finally, the whole insect becomes a pool of liquid in a matter of 3 or 4 days, releasing thousands of millions of viral particles that contaminate other leaves to commence a new cycle. This is the useful insecticide action of this virus”.



Population genetics of the virus

The study was designed to resolve the question of why the deleterious genotypes - which are unable on their own to infect the insect - are maintained in the virus population. “Until now it was believed that the genotypic variants with deletions were defective and, thereby, these variants would tend to disappear with evolution. In consequence, it was believed that in order to produce good insecticides, the logical thing would be to use only those genotypes that were complete. However, on analysing the genetic sequence of this virus, characterising the genotypic variants present in this isolated sample, we have been able to show that the genetic diversity present in this virus is important for the biological activity of the virus and its potential”.

The main consequence of this is that “these variants do not disappear because they contribute to enhancing the overall set of pathogenic characteristics of the viral population. Thus, in the elaboration of insecticides, it is better to work with mixtures of genotypes, given that a much more powerful insecticide is obtained”.
The characterisation of the virus reaffirms the discovery. “There are variants that act synergically between each other and that make the activity of the virus increase. This causes certain genes to be involved in this synergic action and so the next step will be to determine which genes are involved and thus we will be able to extrapolate them to other viruses also”.

The results will be applicable to the development of bioinsecticides “that can be used in countries like Mexico and Honduras, where significant damage is incurred in maize plagues, affected by this virus”.

But moreover these results can “be extrapolated to the elaboration of other bioinsectides because the importance of the discovery of the retention of these variants lies in the fact that it can be valid for other viruses”.

The advantages of using bioinsecticides instead of chemical insecticides are many, states the research scientist, “Their high-specificity insecticide action does not contaminate the environment and are not toxic for the rest of the (beneficial) insects, plants, land and marine animals nor for humans. This means that products based on these viruses are ecologically very sound, desirable and compatible with most control agents and thereby an interesting alternative in any plague control programme”. One of the main drawbacks in marketing the product “is precisely its high specificity, together with its high production cost. Thus, it is necessary to continue researching new techniques to enable the production of a virus with a wider spectrum of potential hosts, in larger quantities and at a lower cost”.

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>