Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diatom genome reveals key role in biosphere’s carbon cycle

04.10.2004


The first genetic instruction manual of a diatom, from a family of microscopic ocean algae that are among the Earth’s most prolific carbon dioxide assimilators, has yielded important insights on how the creature uses nitrogen, fats, and silica to thrive.



The diatom DNA sequencing project, funded by the U.S. Department of Energy (DOE) and conducted at the DOE Joint Genome Institute, provides insight into how the diatom species Thalassiosira pseudonana prospers in the marine environment while it contributes to absorbing the major greenhouse gas CO2,in amounts comparable to all the world’s tropical rain forests combined. "This critical information enables us to better understand the vital role that diatoms and other phytoplankton play in mediating global warming," says Dan Rokhsar, who heads computational genomics at the JGI and is one of the co-authors of a research article in the Oct. 1 issue of Science. "Now that we have a glimpse at the inner workings of diatoms, we’re better positioned to understand how changes in their population numbers will translate into environmental changes and the global carbon management picture."

"These organisms are incredibly important in the global carbon cycle," says Virginia Armbrust, a University of Washington associate professor of oceanography and lead author of the Science paper. Together, the single-celled organisms generate as much as 40 percent of the 50 billion to 55 billion tons of organic carbon produced each year in the sea and in the process use carbon dioxide and produce oxygen. And they are an important food source for many other marine organisms.


Scientists would like to better understand how these organisms react to changes in sea temperatures, the amount of light penetrating the oceans, and nutrients. "Oceanographers thought we understood how diatoms use nitrogen, but we discovered they have a urea cycle, something no one ever suspected," Armbrust says. A urea cycle is a nitrogen waste pathway found in animals and has never before been seen in a photosynthetic eukaryote like a diatom, she says. Nitrogen is crucial for diatom growth and is often in short supply in seawater, depending on ocean conditions. The genome work revealed that the diatom Thalassiosira pseudonana has the genes to produce urea-cycle enzymes that may help to reduce its dependence on nitrogen from the surrounding waters.

The genome work also shed additional light on how this diatom species uses fats, or lipids, which it is known to store in huge amounts. "Learning the actual pathways they use to metabolize their fats helps explain the ability of diatoms to withstand long periods with little sunlight--even to overwinter--and then start growing really rapidly once they return to sunlight," she says.

Three or four microns in width--as many as 70 could fit in the width of a human hair--Thalassiosira pseudonana is among the smallest diatoms. Like its brethren, it is encased by a frustule, a rigid cell wall delicately marked with pores in patterns distinctive enough for scientists to tell the species apart. Another new finding reported in Science concerns the unusual way the diatom metabolizes silicon to form its characteristically ornate silica frustule. "Diatoms can manipulate silica in ways that nanotechnologists can only dream about. If we understood how they can design and build their patterned frustule as part of their biology, perhaps this could be adapted by humans," Rokhsar says.

Scientists on the project, which includes 46 researchers from 26 institutions, also considered the evolutionary implications revealed by the genomic work. The research provided direct genetic confirmation of a hypothesis that diatoms evolved when a heterotroph, a single-cell microbe, engulfed what scientists say was likely a kind of red alga. The two became one organism, an arrangement called endosymbiosis, and swapped some genetic material to create a new hybrid genome.

"This project helps illustrate the amazing diversity of life on our planet," Armbrust says. "Diatoms display features traditionally thought to be restricted to animals and other features thought to be restricted to plants. Diatoms, with complete disregard for these presumed boundaries, have mixed and matched different attributes to create an incredibly successful microorganism. It’s exciting to imagine the novelty in the oceans that still awaits our discovery."

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov
http://www.jgi.doe.gov

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>