Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor implicated in tissue remodeling

01.10.2004


A well-known enzyme present in the skin and other tissues turns out to be a molecule-sized motor that extracts its fuel from the road it runs on, according to researchers at Washington University School of Medicine in St. Louis. Their discovery appears in the Oct. 1 issue of Science.



The enzyme, MMP-1, is a member of a group of enzymes that breaks down collagen, a fibrous substance that constitutes the foundation of the extracellular matrix that supports the cells in the body’s tissues.

"By digesting collagen, enzymes such as MMP-1 initiate tissue remodeling, which can have a variety of purposes from organ development to tissue repair to metastatic invasion of tumors," says senior author Gregory Goldberg, Ph.D., professor of dermatology and of biochemistry and molecular biophysics. "Because they participate in all basic tissue metabolism, we want to understand how they function."


Goldberg and his colleagues Savees Saffarian, Ivan Collier, Barry Marmer and Elliot Elson found that MMP-1 operates as a molecular motor--a molecule that converts chemical energy into motion. "This is the only extracellular motor known," says Elson, Ph.D., coauthor and professor of biochemistry and molecular biophysics.

The research team discovered that MMP-1 moves along a collagen filament with a net unidirectional motion. One-way motion indicates that energy is being utilized, so the team looked for an energy source.

While most molecules that act as motors are inside cells and get their energy from a ubiquitous high-energy molecule called ATP, the team found that MMP-1 gets its energy by breaking the molecular bonds in the collagen filament it is attached to. "In fact," Goldberg says, "with our model, a whole new principle emerges in which molecular motors in the extracellular matrix operate by extracting energy from the very track they move upon."

The researchers propose that the molecular motor contributes to restructuring the extracellular support matrix during tissue growth and development or wound repair or even during cancerous invasion of tissues. Because MMP-1 moves directionally, it can serve as a clutch, assisting cell locomotion along networks of collagen in tissues. Further, motion along the precisely aligned collagen filaments directs the proper development of individual tissue types.

The model of MMP-1 action revealed by Goldberg and his colleagues might help explain how the enzymes that digest collagen serve constructive purposes. "The enzymes aren’t loose and disorganized where they would just end up destroying the matrix," Goldberg states. "By mechanisms that we are exploring further, they create a relation between cells and the structures in the matrix. It’s a very elegant system."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>