Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor implicated in tissue remodeling

01.10.2004


A well-known enzyme present in the skin and other tissues turns out to be a molecule-sized motor that extracts its fuel from the road it runs on, according to researchers at Washington University School of Medicine in St. Louis. Their discovery appears in the Oct. 1 issue of Science.



The enzyme, MMP-1, is a member of a group of enzymes that breaks down collagen, a fibrous substance that constitutes the foundation of the extracellular matrix that supports the cells in the body’s tissues.

"By digesting collagen, enzymes such as MMP-1 initiate tissue remodeling, which can have a variety of purposes from organ development to tissue repair to metastatic invasion of tumors," says senior author Gregory Goldberg, Ph.D., professor of dermatology and of biochemistry and molecular biophysics. "Because they participate in all basic tissue metabolism, we want to understand how they function."


Goldberg and his colleagues Savees Saffarian, Ivan Collier, Barry Marmer and Elliot Elson found that MMP-1 operates as a molecular motor--a molecule that converts chemical energy into motion. "This is the only extracellular motor known," says Elson, Ph.D., coauthor and professor of biochemistry and molecular biophysics.

The research team discovered that MMP-1 moves along a collagen filament with a net unidirectional motion. One-way motion indicates that energy is being utilized, so the team looked for an energy source.

While most molecules that act as motors are inside cells and get their energy from a ubiquitous high-energy molecule called ATP, the team found that MMP-1 gets its energy by breaking the molecular bonds in the collagen filament it is attached to. "In fact," Goldberg says, "with our model, a whole new principle emerges in which molecular motors in the extracellular matrix operate by extracting energy from the very track they move upon."

The researchers propose that the molecular motor contributes to restructuring the extracellular support matrix during tissue growth and development or wound repair or even during cancerous invasion of tissues. Because MMP-1 moves directionally, it can serve as a clutch, assisting cell locomotion along networks of collagen in tissues. Further, motion along the precisely aligned collagen filaments directs the proper development of individual tissue types.

The model of MMP-1 action revealed by Goldberg and his colleagues might help explain how the enzymes that digest collagen serve constructive purposes. "The enzymes aren’t loose and disorganized where they would just end up destroying the matrix," Goldberg states. "By mechanisms that we are exploring further, they create a relation between cells and the structures in the matrix. It’s a very elegant system."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>