Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor implicated in tissue remodeling

01.10.2004


A well-known enzyme present in the skin and other tissues turns out to be a molecule-sized motor that extracts its fuel from the road it runs on, according to researchers at Washington University School of Medicine in St. Louis. Their discovery appears in the Oct. 1 issue of Science.



The enzyme, MMP-1, is a member of a group of enzymes that breaks down collagen, a fibrous substance that constitutes the foundation of the extracellular matrix that supports the cells in the body’s tissues.

"By digesting collagen, enzymes such as MMP-1 initiate tissue remodeling, which can have a variety of purposes from organ development to tissue repair to metastatic invasion of tumors," says senior author Gregory Goldberg, Ph.D., professor of dermatology and of biochemistry and molecular biophysics. "Because they participate in all basic tissue metabolism, we want to understand how they function."


Goldberg and his colleagues Savees Saffarian, Ivan Collier, Barry Marmer and Elliot Elson found that MMP-1 operates as a molecular motor--a molecule that converts chemical energy into motion. "This is the only extracellular motor known," says Elson, Ph.D., coauthor and professor of biochemistry and molecular biophysics.

The research team discovered that MMP-1 moves along a collagen filament with a net unidirectional motion. One-way motion indicates that energy is being utilized, so the team looked for an energy source.

While most molecules that act as motors are inside cells and get their energy from a ubiquitous high-energy molecule called ATP, the team found that MMP-1 gets its energy by breaking the molecular bonds in the collagen filament it is attached to. "In fact," Goldberg says, "with our model, a whole new principle emerges in which molecular motors in the extracellular matrix operate by extracting energy from the very track they move upon."

The researchers propose that the molecular motor contributes to restructuring the extracellular support matrix during tissue growth and development or wound repair or even during cancerous invasion of tissues. Because MMP-1 moves directionally, it can serve as a clutch, assisting cell locomotion along networks of collagen in tissues. Further, motion along the precisely aligned collagen filaments directs the proper development of individual tissue types.

The model of MMP-1 action revealed by Goldberg and his colleagues might help explain how the enzymes that digest collagen serve constructive purposes. "The enzymes aren’t loose and disorganized where they would just end up destroying the matrix," Goldberg states. "By mechanisms that we are exploring further, they create a relation between cells and the structures in the matrix. It’s a very elegant system."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>