Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers discover VEGF molecule contributes to the development of asthma

30.09.2004


In a whole new approach to asthma research, scientists at Yale have discovered that a molecule called Vascular Endothelial Growth Factor (VEGF) likely plays an important role in the development of the disease and raises the possibility of new asthma drugs that block VEGF receptors and signaling pathways.



VEGF is normally associated with the growth of new blood vessels in the lung and other organs. Yale researchers found, however, that in addition to this function, VEGF can also induce asthma-like abnormalities in the airway. When VEGF is expressed in the lungs of genetically engineered "transgenic" mice, asthma-like alterations develop, according to a report in the journal Nature Medicine.

"In humans with asthma, there is an increased level of VEGF, so we mimicked this condition in mice by over expressing VEGF in their lungs," said principal investigator Jack A. Elias, M.D., section chief of pulmonary and critical care medicine at Yale School of Medicine. "To our surprise, in addition to growing new blood vessels, many other features of asthma were also seen in these mice. We saw mucous formation, airway fibrosis and asthma-like pulmonary function abnormalities. We also found that if you block VEGF, you block the asthma-like manifestations in other mouse asthma models."


Previous studies showed that people with allergies and asthma have an excess of T-helper type 2 cells (TH2). Elias and his team found that when VEGF is produced, the TH2 response is increased.

A high percentage of people with asthma have allergies. They also have a higher tendency to become allergic to particles and antigens to which they are exposed. Normal individuals become tolerant to the same agents, instead of becoming allergic. "The reason why some people develop this tolerance and others don’t has never been understood," Elias said. "We found that this tolerance is broken in the genetically-engineered transgenic mice, suggesting that the VEGF-induced break in tolerance contributes to the allergic sensitization of asthmatic patients."

Elias and his team are currently examining how VEGF works at the cellular and molecular level. These latest findings add to the growing body of research from Elias’s lab that has advanced knowledge of asthma, a rapidly increasing chronic lung condition, which affects millions of people around the world.

Other authors on the study included Chun Geun Lee, M.D., Holger Link, M.D., Robert J. Homer, M.D., Svetlana Chapoval, M.D., Vineet Bhandari, M.D., Min Jong Kang, M.D., Lauren Cohn, M.D., and Yoon Keun Kim, M.D., of Yale; and Peter Baluk and Donald M. McDonald, M.D. of University of California/San Francisco.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>