Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers discover VEGF molecule contributes to the development of asthma

30.09.2004


In a whole new approach to asthma research, scientists at Yale have discovered that a molecule called Vascular Endothelial Growth Factor (VEGF) likely plays an important role in the development of the disease and raises the possibility of new asthma drugs that block VEGF receptors and signaling pathways.



VEGF is normally associated with the growth of new blood vessels in the lung and other organs. Yale researchers found, however, that in addition to this function, VEGF can also induce asthma-like abnormalities in the airway. When VEGF is expressed in the lungs of genetically engineered "transgenic" mice, asthma-like alterations develop, according to a report in the journal Nature Medicine.

"In humans with asthma, there is an increased level of VEGF, so we mimicked this condition in mice by over expressing VEGF in their lungs," said principal investigator Jack A. Elias, M.D., section chief of pulmonary and critical care medicine at Yale School of Medicine. "To our surprise, in addition to growing new blood vessels, many other features of asthma were also seen in these mice. We saw mucous formation, airway fibrosis and asthma-like pulmonary function abnormalities. We also found that if you block VEGF, you block the asthma-like manifestations in other mouse asthma models."


Previous studies showed that people with allergies and asthma have an excess of T-helper type 2 cells (TH2). Elias and his team found that when VEGF is produced, the TH2 response is increased.

A high percentage of people with asthma have allergies. They also have a higher tendency to become allergic to particles and antigens to which they are exposed. Normal individuals become tolerant to the same agents, instead of becoming allergic. "The reason why some people develop this tolerance and others don’t has never been understood," Elias said. "We found that this tolerance is broken in the genetically-engineered transgenic mice, suggesting that the VEGF-induced break in tolerance contributes to the allergic sensitization of asthmatic patients."

Elias and his team are currently examining how VEGF works at the cellular and molecular level. These latest findings add to the growing body of research from Elias’s lab that has advanced knowledge of asthma, a rapidly increasing chronic lung condition, which affects millions of people around the world.

Other authors on the study included Chun Geun Lee, M.D., Holger Link, M.D., Robert J. Homer, M.D., Svetlana Chapoval, M.D., Vineet Bhandari, M.D., Min Jong Kang, M.D., Lauren Cohn, M.D., and Yoon Keun Kim, M.D., of Yale; and Peter Baluk and Donald M. McDonald, M.D. of University of California/San Francisco.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>