Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify T cell that relieves asthma in mice

27.09.2004


For the second time in two years, scientists at the Stanford University School of Medicine have discovered a new type of regulatory T cell that reduces asthma and airway inflammation in mice, bolstering the theory that a deficiency of such cells is a prime cause of the breathing disorder as well as allergies.



The team’s research not only provides a detailed profile of these newfound cells but also sheds light on how such cells are related to other T cells and suggests that there exists a spectrum of regulatory T cells, known as Tregs, to be identified and studied. "It’s likely that Tregs aren’t functioning or developing properly in people who suffer from asthma and allergies," said Dale Umetsu, MD, PhD, professor of pediatrics who led the research team. "This new understanding of the fine characteristics of regulatory T cells brings us closer to developing therapies that will provide cures for allergies, asthma, and perhaps a number of other diseases involving immune dysregulation," added Umetsu, who is also chief of the division of allergy and immunology at Lucile Packard Children’s Hospital at Stanford.

Humans have a variety of T cells - including regulatory (Tregs), helper (Th) and natural killer (NKTs) - and there are different types within each of those categories. But all of them play a critical role in how, ideally, the human immune system responds when invaded by viruses, bacteria and allergens: the cells fight the enemies - the viruses and bacteria - and ignore the innocuous visitors - the allergens. The problem for allergy and asthma sufferers is that the body responds to allergens as if they were reviled foes, engaging in a full-out battle that inflames airways and impedes breathing.


In hopes of preventing such reactions, the Stanford researchers have been studying the Tregs, which appear to act as the immune system’s peacekeepers, signaling to other T cells when to hold off from attacking an intruder. Two years ago, they identified one type of Treg cell that could reduce airway inflammation and asthma in mice. And now, in a study published in the Sept. 26 online version of Nature Immunology, they have identified another type of regulatory T cell that produced the same result: the airways of mice that received injections of the cells were not inflamed despite confrontation with allergens.

The team’s findings also show that all of the Tregs share important features that might explain how they exert a calming influence on their battle-hungry brethren. Before now, researchers had identified two broad categories of Tregs - natural and adaptive. Natural Tregs are produced in the thymus, are always present in predictable quantities and appear to be important in the prevention of autoimmune disease. Adaptive regulatory T cells, the type studied by Umetsu and his colleagues, develop in response to incoming invaders and have been thought be to quite distinct from natural Tregs.

But Umetsu and his colleagues found that both the adaptive and natural Tregs depend on a gene called Foxp3. When this gene doesn’t function properly in humans, they lack natural Tregs and develop an autoimmune disorder called IPEX Syndrome, which includes severe allergies among its symptoms. By identifying this gene in the adaptive Tregs, the researchers add credence to the idea that nonfunctional or inadequate Tregs lead to allergies.

The researchers also found that the two adaptive Tregs share certain characteristics. Both appear to communicate their peacekeeping message using the same language: they produce a chemical called IL-10 and signal their desires through the same pipeline, known as the ICOS-ICOSL regulatory pathway.

But the two types of Tregs exhibit intriguing differences. Umetsu said each appears to be associated with a different helper T cell (Th cell). Each Treg has a gene turned on that is also turned on in the corresponding Th cell, and each Treg appears to be produced in greater numbers when its corresponding Th cell responds to an intruder. Although an excess of one of the Th cells is associated with autoimmune diseases such as multiple sclerosis and type 1-diabetes, and an excess of the other is linked to allergies and asthma, both Th cells cause inflammation. In turn, the two Treg cells have the opposite effect. "Both can help reduce airway inflammation," said Umetsu. "We have now found several subtypes of regulatory T cells," he added, "and we are proposing how these are all interrelated. We believe this study provides a scaffold for future studies of regulatory T cells."

Umetsu’s Stanford collaborators include Philippe Stock, MD, PhD; Omid Akbari, PhD; Rosemarie DeKruyff, PhD, professor of pediatrics; and Gerald Berry, MD, associate professor of pathology.

Katharine Miller | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>