Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify T cell that relieves asthma in mice


For the second time in two years, scientists at the Stanford University School of Medicine have discovered a new type of regulatory T cell that reduces asthma and airway inflammation in mice, bolstering the theory that a deficiency of such cells is a prime cause of the breathing disorder as well as allergies.

The team’s research not only provides a detailed profile of these newfound cells but also sheds light on how such cells are related to other T cells and suggests that there exists a spectrum of regulatory T cells, known as Tregs, to be identified and studied. "It’s likely that Tregs aren’t functioning or developing properly in people who suffer from asthma and allergies," said Dale Umetsu, MD, PhD, professor of pediatrics who led the research team. "This new understanding of the fine characteristics of regulatory T cells brings us closer to developing therapies that will provide cures for allergies, asthma, and perhaps a number of other diseases involving immune dysregulation," added Umetsu, who is also chief of the division of allergy and immunology at Lucile Packard Children’s Hospital at Stanford.

Humans have a variety of T cells - including regulatory (Tregs), helper (Th) and natural killer (NKTs) - and there are different types within each of those categories. But all of them play a critical role in how, ideally, the human immune system responds when invaded by viruses, bacteria and allergens: the cells fight the enemies - the viruses and bacteria - and ignore the innocuous visitors - the allergens. The problem for allergy and asthma sufferers is that the body responds to allergens as if they were reviled foes, engaging in a full-out battle that inflames airways and impedes breathing.

In hopes of preventing such reactions, the Stanford researchers have been studying the Tregs, which appear to act as the immune system’s peacekeepers, signaling to other T cells when to hold off from attacking an intruder. Two years ago, they identified one type of Treg cell that could reduce airway inflammation and asthma in mice. And now, in a study published in the Sept. 26 online version of Nature Immunology, they have identified another type of regulatory T cell that produced the same result: the airways of mice that received injections of the cells were not inflamed despite confrontation with allergens.

The team’s findings also show that all of the Tregs share important features that might explain how they exert a calming influence on their battle-hungry brethren. Before now, researchers had identified two broad categories of Tregs - natural and adaptive. Natural Tregs are produced in the thymus, are always present in predictable quantities and appear to be important in the prevention of autoimmune disease. Adaptive regulatory T cells, the type studied by Umetsu and his colleagues, develop in response to incoming invaders and have been thought be to quite distinct from natural Tregs.

But Umetsu and his colleagues found that both the adaptive and natural Tregs depend on a gene called Foxp3. When this gene doesn’t function properly in humans, they lack natural Tregs and develop an autoimmune disorder called IPEX Syndrome, which includes severe allergies among its symptoms. By identifying this gene in the adaptive Tregs, the researchers add credence to the idea that nonfunctional or inadequate Tregs lead to allergies.

The researchers also found that the two adaptive Tregs share certain characteristics. Both appear to communicate their peacekeeping message using the same language: they produce a chemical called IL-10 and signal their desires through the same pipeline, known as the ICOS-ICOSL regulatory pathway.

But the two types of Tregs exhibit intriguing differences. Umetsu said each appears to be associated with a different helper T cell (Th cell). Each Treg has a gene turned on that is also turned on in the corresponding Th cell, and each Treg appears to be produced in greater numbers when its corresponding Th cell responds to an intruder. Although an excess of one of the Th cells is associated with autoimmune diseases such as multiple sclerosis and type 1-diabetes, and an excess of the other is linked to allergies and asthma, both Th cells cause inflammation. In turn, the two Treg cells have the opposite effect. "Both can help reduce airway inflammation," said Umetsu. "We have now found several subtypes of regulatory T cells," he added, "and we are proposing how these are all interrelated. We believe this study provides a scaffold for future studies of regulatory T cells."

Umetsu’s Stanford collaborators include Philippe Stock, MD, PhD; Omid Akbari, PhD; Rosemarie DeKruyff, PhD, professor of pediatrics; and Gerald Berry, MD, associate professor of pathology.

Katharine Miller | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>