Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists successfully target key HIV protein; breakthrough may lead to new drug therapies

27.09.2004


In what may be a first step toward expanding the arsenal against HIV, UC Irvine researchers have successfully targeted an HIV protein that has eluded existing therapies.



Researchers targeted Nef, a protein responsible for accelerating the development of acquired immunodeficiency syndrome, or AIDS. Nef was targeted with small molecules synthesized by the researchers – molecules that disrupted Nef’s interaction with other proteins. The technique used for identifying the synthetic molecules also may lead to new drug therapies with improved treatment options.

The researchers used a scientific technique called “phage display,” which is used to identify small molecule inhibitors that can disrupt interactions between proteins. According to Gregory Weiss, lead researcher and assistant professor in the Department of Chemistry, his research team attached the Nef protein to the surface of a harmless virus, then created synthetic molecules that could target and dislodge the protein. This is the first time phage display has been used to identify molecules that disrupt protein-protein interactions. (For more detail, see “About the Research.”)


While the method was successful, Weiss said the molecules identified proved toxic to cells. He is now seeking to develop less toxic compounds that will have high potencies against Nef without causing collateral damage. A key benefit of this achievement, he added, would be the development of therapies using smaller molecules, which can often be used in oral medications. Therapies that rely on larger molecules are used in medications injected by needle. “By proving small molecules can be effective for targeting Nef, we’ve shown how researchers can expand the fight against AIDS,” said Weiss.

The researchers reported their findings last week in the online edition of the Proceedings of the National Academy of Science. The print version of the research paper will appear in the Sept. 28 issue of the journal.

Human immunodeficiency virus, commonly known as HIV, is known to cause AIDS. The virus attacks the body’s immune system, making the body vulnerable to infections and certain cancers. Symptoms of acute HIV infection may include fever, headache, fatigue and enlarged lymph nodes. The virus is spread most commonly by having unprotected sex with an infected person.

Funded by the Arnold and Mabel Beckman Foundation, the Burroughs Wellcome Fund and the National Institutes of Health, the three-year research effort involved innovation in small molecule discovery. Conducted entirely at UCI, the multidisciplinary research involved a partnership among three laboratories and a collaboration of scientists in chemistry, molecular biology, biochemistry and pathology.
Besides Weiss, co-authors of the study are Allison Olszewski, Ken Sato, Zachary D. Aron, Frederick Cohen, Aleishia Harris, Brenda R. McDougall, W. Edward Robinson Jr., and Larry Overman. Olszewski, a doctoral candidate in chemistry, is the lead author of the paper. Overman’s laboratory synthesized the small molecules; Robinson’s laboratory tested them for cellular toxicity and anti-HIV activity; and Weiss’ laboratory performed measurements to identify which molecules were inhibitory to Nef.

About the research: Led by chemist Gregory Weiss, the researchers invented a system for identifying guanidine alkaloids – small molecule inhibitors of protein-protein interactions. They attached the Nef protein to the surface of a bacteriophage (a virus whose host is a bacterium), which provided a ‘handle’ that could be tracked by the researchers to determine whether Nef was binding to three cellular proteins, as is Nef’s function. (Although Nef is able to bind well to the three proteins in the absence of the bacteriophage, the researchers used the bacteriophage simply as a handle to watch the binding.)

Next, the researchers looked for a mechanism that would disrupt binding by Nef. They found that their synthesized molecules and Nef both competed to bind with the cellular proteins. Each time the molecules succeeded, Nef was dislodged from binding to the three cellular proteins and thus inhibited.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>