Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists successfully target key HIV protein; breakthrough may lead to new drug therapies

27.09.2004


In what may be a first step toward expanding the arsenal against HIV, UC Irvine researchers have successfully targeted an HIV protein that has eluded existing therapies.



Researchers targeted Nef, a protein responsible for accelerating the development of acquired immunodeficiency syndrome, or AIDS. Nef was targeted with small molecules synthesized by the researchers – molecules that disrupted Nef’s interaction with other proteins. The technique used for identifying the synthetic molecules also may lead to new drug therapies with improved treatment options.

The researchers used a scientific technique called “phage display,” which is used to identify small molecule inhibitors that can disrupt interactions between proteins. According to Gregory Weiss, lead researcher and assistant professor in the Department of Chemistry, his research team attached the Nef protein to the surface of a harmless virus, then created synthetic molecules that could target and dislodge the protein. This is the first time phage display has been used to identify molecules that disrupt protein-protein interactions. (For more detail, see “About the Research.”)


While the method was successful, Weiss said the molecules identified proved toxic to cells. He is now seeking to develop less toxic compounds that will have high potencies against Nef without causing collateral damage. A key benefit of this achievement, he added, would be the development of therapies using smaller molecules, which can often be used in oral medications. Therapies that rely on larger molecules are used in medications injected by needle. “By proving small molecules can be effective for targeting Nef, we’ve shown how researchers can expand the fight against AIDS,” said Weiss.

The researchers reported their findings last week in the online edition of the Proceedings of the National Academy of Science. The print version of the research paper will appear in the Sept. 28 issue of the journal.

Human immunodeficiency virus, commonly known as HIV, is known to cause AIDS. The virus attacks the body’s immune system, making the body vulnerable to infections and certain cancers. Symptoms of acute HIV infection may include fever, headache, fatigue and enlarged lymph nodes. The virus is spread most commonly by having unprotected sex with an infected person.

Funded by the Arnold and Mabel Beckman Foundation, the Burroughs Wellcome Fund and the National Institutes of Health, the three-year research effort involved innovation in small molecule discovery. Conducted entirely at UCI, the multidisciplinary research involved a partnership among three laboratories and a collaboration of scientists in chemistry, molecular biology, biochemistry and pathology.
Besides Weiss, co-authors of the study are Allison Olszewski, Ken Sato, Zachary D. Aron, Frederick Cohen, Aleishia Harris, Brenda R. McDougall, W. Edward Robinson Jr., and Larry Overman. Olszewski, a doctoral candidate in chemistry, is the lead author of the paper. Overman’s laboratory synthesized the small molecules; Robinson’s laboratory tested them for cellular toxicity and anti-HIV activity; and Weiss’ laboratory performed measurements to identify which molecules were inhibitory to Nef.

About the research: Led by chemist Gregory Weiss, the researchers invented a system for identifying guanidine alkaloids – small molecule inhibitors of protein-protein interactions. They attached the Nef protein to the surface of a bacteriophage (a virus whose host is a bacterium), which provided a ‘handle’ that could be tracked by the researchers to determine whether Nef was binding to three cellular proteins, as is Nef’s function. (Although Nef is able to bind well to the three proteins in the absence of the bacteriophage, the researchers used the bacteriophage simply as a handle to watch the binding.)

Next, the researchers looked for a mechanism that would disrupt binding by Nef. They found that their synthesized molecules and Nef both competed to bind with the cellular proteins. Each time the molecules succeeded, Nef was dislodged from binding to the three cellular proteins and thus inhibited.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>