Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists successfully target key HIV protein; breakthrough may lead to new drug therapies

27.09.2004


In what may be a first step toward expanding the arsenal against HIV, UC Irvine researchers have successfully targeted an HIV protein that has eluded existing therapies.



Researchers targeted Nef, a protein responsible for accelerating the development of acquired immunodeficiency syndrome, or AIDS. Nef was targeted with small molecules synthesized by the researchers – molecules that disrupted Nef’s interaction with other proteins. The technique used for identifying the synthetic molecules also may lead to new drug therapies with improved treatment options.

The researchers used a scientific technique called “phage display,” which is used to identify small molecule inhibitors that can disrupt interactions between proteins. According to Gregory Weiss, lead researcher and assistant professor in the Department of Chemistry, his research team attached the Nef protein to the surface of a harmless virus, then created synthetic molecules that could target and dislodge the protein. This is the first time phage display has been used to identify molecules that disrupt protein-protein interactions. (For more detail, see “About the Research.”)


While the method was successful, Weiss said the molecules identified proved toxic to cells. He is now seeking to develop less toxic compounds that will have high potencies against Nef without causing collateral damage. A key benefit of this achievement, he added, would be the development of therapies using smaller molecules, which can often be used in oral medications. Therapies that rely on larger molecules are used in medications injected by needle. “By proving small molecules can be effective for targeting Nef, we’ve shown how researchers can expand the fight against AIDS,” said Weiss.

The researchers reported their findings last week in the online edition of the Proceedings of the National Academy of Science. The print version of the research paper will appear in the Sept. 28 issue of the journal.

Human immunodeficiency virus, commonly known as HIV, is known to cause AIDS. The virus attacks the body’s immune system, making the body vulnerable to infections and certain cancers. Symptoms of acute HIV infection may include fever, headache, fatigue and enlarged lymph nodes. The virus is spread most commonly by having unprotected sex with an infected person.

Funded by the Arnold and Mabel Beckman Foundation, the Burroughs Wellcome Fund and the National Institutes of Health, the three-year research effort involved innovation in small molecule discovery. Conducted entirely at UCI, the multidisciplinary research involved a partnership among three laboratories and a collaboration of scientists in chemistry, molecular biology, biochemistry and pathology.
Besides Weiss, co-authors of the study are Allison Olszewski, Ken Sato, Zachary D. Aron, Frederick Cohen, Aleishia Harris, Brenda R. McDougall, W. Edward Robinson Jr., and Larry Overman. Olszewski, a doctoral candidate in chemistry, is the lead author of the paper. Overman’s laboratory synthesized the small molecules; Robinson’s laboratory tested them for cellular toxicity and anti-HIV activity; and Weiss’ laboratory performed measurements to identify which molecules were inhibitory to Nef.

About the research: Led by chemist Gregory Weiss, the researchers invented a system for identifying guanidine alkaloids – small molecule inhibitors of protein-protein interactions. They attached the Nef protein to the surface of a bacteriophage (a virus whose host is a bacterium), which provided a ‘handle’ that could be tracked by the researchers to determine whether Nef was binding to three cellular proteins, as is Nef’s function. (Although Nef is able to bind well to the three proteins in the absence of the bacteriophage, the researchers used the bacteriophage simply as a handle to watch the binding.)

Next, the researchers looked for a mechanism that would disrupt binding by Nef. They found that their synthesized molecules and Nef both competed to bind with the cellular proteins. Each time the molecules succeeded, Nef was dislodged from binding to the three cellular proteins and thus inhibited.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>