Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher looks for clues to mysterious disease

24.09.2004


Few have heard of the degenerative, deadly disease called Ataxia-telangiectasia (A-T) but a University of Alberta researcher is hoping to provide clues to this mysterious disorder.

Dr. Shelagh Campbell, from the U of A’s Department of Biological Sciences, is a basic researcher who studies how normal cell cycles are regulated, by analyzing genes that are responsible for repairing DNA damage that offer insights into human diseases like cancer and A-T. A-T is a progressive, degenerative disease that affects a startling number of body systems. Children with A-T appear normal at birth but at around the age of two, some of the first signs--walking and balance is wobbly caused by ataxia or lack of muscle control--start appearing. "Kids are often misdiagnosed with cerebral palsy but what distinguishes A-T is it gets worse," said Campbell. "Sadly, many of the people with A-T end up in wheelchairs and most die young (I think there is a fair range).

Soon after the onset of A-T, children lose their ability to write and speech becomes slow and slurred. Reading eventually becomes impossible because eye movements are too hard to control. Other features of the debilitating disease include mild diabetes, premature graying of the hair, difficulty swallowing causing choking and drooling and slowed growth. Children with A-T also tend to be more predisposed to developing cancer. Ironically, the disease carries with it sensitivity to radiation, which means A-T patients cannot tolerate the therapeutic radiation usually given to cancer patients.



That’s where Campbell hopes to apply her work. Scientists already know that the A-T protein (ATM) is fundamental to repairing DNA damage so she and her research team are studying ATM mutants, which behave as cells do when they are damaged.

In a recent issue of the journal, "Current Biology," Campbell describes how they examined ATM mutants for signs of locomotor defects in mutant and control flies and found the average climbing ability to be lower for the mutant males. Aside from locomotor defects, the mutants recapitulated major symptoms of the disease, A-T, including sensitivity to ionizing radiation and chromosome instability. "If you want to study a conserved biological process, it makes sense to do it in a system where you can do all these genetic tricks," said Campbell of being able to create mutant proteins and manipulate such factors as temperature. "We have an excellent model for investigating the basic mechanisms of chromosome structural maintenance involving ATM, allowing us to study how ATM works in a meaningful developmental context."

Although a cure seems to be a long way off, using this system to understand more about how ATM works will offer more clues to treating the disease, said Campbell. "There are some serious efforts being made for treatment of A-T and what we learn may also make it easier to screen for known carriers," she said. "My hope is by fully understanding how ATM functions, at least we can look at improving the quality of life for those unfortunate to receive mutant alleles from both their parents. That’s the million dollar question--how does ATM work, and we’re slowly getting closer to understanding it."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>