Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers ID chlorophyll-regulating gene

24.09.2004


Researchers at the University of California, Berkeley, have identified a critical gene for plants that start their lives as seeds buried in soil. They say the burial of seeds was an adaptation that likely helped plants spread from humid, wet climates to drier, hostile environments.



In a study published in the Sept. 24 issue of the journal Science, the researchers describe how a gene called phytochrome-interacting factor 1, or PIF1, affects the production of protochlorophyll, a precursor of the chlorophyll used by plants to convert the sun’s energy into food during photosynthesis.

While a seed germinates under soil, in the dark, it is producing a controlled amount of protochlorophyll in preparation for its debut above ground. Much like a baby takes his or her first breath of air after emerging from the womb, seedlings must quickly convert protochlorophyll into chlorophyll once they are exposed to light for the first time. "It’s a delicate balancing act," said Peter Quail, professor of plant and microbial biology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "The young plant needs some protochlorophyll to get the ball rolling in photosynthesis. But if the plant accumulates too much of the compound, it leads to photo-oxidative stress, which is seen as bleaching on the leaves. The overproduction of protochlorophyll is like a ticking time bomb that is set off by the sun."


Quail is also research director of the Plant Gene Expression Center, a joint research center of the Agricultural Research Service of the U.S. Department of Agriculture and the University of California. The researchers targeted the PIF1 gene because it binds to phytochrome, a protein that is triggered by light and that controls a plant’s growth and development. The researchers disabled the PIF1 gene in the species Arabidopsis thaliana, a mustard plant, and compared the mutant seedlings with a control group of normal plants.

They grew the seedlings in the dark to mimic conditions beneath the soil, bringing groups out into the light at different time points throughout a six-day period. In nature, seeds are typically buried under 2 to 10 millimeters of soil, taking anywhere from two to seven days to germinate and break through the soil surface. "We found that mutated plants had twice the levels of protochlorophyll than normal, wild-type plants, suggesting that phytochrome acts as a negative regulator for protochlorophyll," said lead author Enamul Huq, who conducted the study while he was a post-doctoral researcher at UC Berkeley’s Department of Plant and Microbial Biology. "We also saw that the longer the seedlings were grown in the dark, the more likely they would die when they were exposed to light."

The mutated seedlings failed to switch off production of protochlorophyll throughout the germination period, so the longer the seedlings stayed in the dark, the more toxic the levels became. Huq, now an assistant professor of molecular cell and developmental biology at the University of Texas at Austin, pointed out that it is an "unbound" form of protochlorophyll that is toxic. Normal plants, he said, produce enough of an enzyme, called protochlorophyllide oxidoreductase, to bind with typical levels of protochlorophyll. But not enough of the enzyme is produced to handle the overabundance of unbound protochlorophyll churned out by the mutant seedlings.

The researchers say the ability of plants to precisely regulate production of protochlorophyll was probably an evolutionary development designed to ensure seed survival among higher plants. Primitive plants, such as mosses and some species of fern, thrive in moist, humid environments where their spores can stay safely above the soil surface. But all higher plants - from grasses to trees to agricultural crops such as wheat and corn - must have the ability to transition from the darkness of an underground environment to life above ground. "The development of seed burial in plants provided a long-term survival benefit through protection from predators and hostile surface conditions," said Quail. "The true test of our hypothesis would be to verify whether primitive plants have the PIF1 gene, and whether the gene is functional."

The finding may also have implications for agricultural biotechnology, allowing researchers to manipulate the gene to improve the efficiency with which plants carry on photosynthesis.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>