Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers ID chlorophyll-regulating gene

24.09.2004


Researchers at the University of California, Berkeley, have identified a critical gene for plants that start their lives as seeds buried in soil. They say the burial of seeds was an adaptation that likely helped plants spread from humid, wet climates to drier, hostile environments.



In a study published in the Sept. 24 issue of the journal Science, the researchers describe how a gene called phytochrome-interacting factor 1, or PIF1, affects the production of protochlorophyll, a precursor of the chlorophyll used by plants to convert the sun’s energy into food during photosynthesis.

While a seed germinates under soil, in the dark, it is producing a controlled amount of protochlorophyll in preparation for its debut above ground. Much like a baby takes his or her first breath of air after emerging from the womb, seedlings must quickly convert protochlorophyll into chlorophyll once they are exposed to light for the first time. "It’s a delicate balancing act," said Peter Quail, professor of plant and microbial biology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "The young plant needs some protochlorophyll to get the ball rolling in photosynthesis. But if the plant accumulates too much of the compound, it leads to photo-oxidative stress, which is seen as bleaching on the leaves. The overproduction of protochlorophyll is like a ticking time bomb that is set off by the sun."


Quail is also research director of the Plant Gene Expression Center, a joint research center of the Agricultural Research Service of the U.S. Department of Agriculture and the University of California. The researchers targeted the PIF1 gene because it binds to phytochrome, a protein that is triggered by light and that controls a plant’s growth and development. The researchers disabled the PIF1 gene in the species Arabidopsis thaliana, a mustard plant, and compared the mutant seedlings with a control group of normal plants.

They grew the seedlings in the dark to mimic conditions beneath the soil, bringing groups out into the light at different time points throughout a six-day period. In nature, seeds are typically buried under 2 to 10 millimeters of soil, taking anywhere from two to seven days to germinate and break through the soil surface. "We found that mutated plants had twice the levels of protochlorophyll than normal, wild-type plants, suggesting that phytochrome acts as a negative regulator for protochlorophyll," said lead author Enamul Huq, who conducted the study while he was a post-doctoral researcher at UC Berkeley’s Department of Plant and Microbial Biology. "We also saw that the longer the seedlings were grown in the dark, the more likely they would die when they were exposed to light."

The mutated seedlings failed to switch off production of protochlorophyll throughout the germination period, so the longer the seedlings stayed in the dark, the more toxic the levels became. Huq, now an assistant professor of molecular cell and developmental biology at the University of Texas at Austin, pointed out that it is an "unbound" form of protochlorophyll that is toxic. Normal plants, he said, produce enough of an enzyme, called protochlorophyllide oxidoreductase, to bind with typical levels of protochlorophyll. But not enough of the enzyme is produced to handle the overabundance of unbound protochlorophyll churned out by the mutant seedlings.

The researchers say the ability of plants to precisely regulate production of protochlorophyll was probably an evolutionary development designed to ensure seed survival among higher plants. Primitive plants, such as mosses and some species of fern, thrive in moist, humid environments where their spores can stay safely above the soil surface. But all higher plants - from grasses to trees to agricultural crops such as wheat and corn - must have the ability to transition from the darkness of an underground environment to life above ground. "The development of seed burial in plants provided a long-term survival benefit through protection from predators and hostile surface conditions," said Quail. "The true test of our hypothesis would be to verify whether primitive plants have the PIF1 gene, and whether the gene is functional."

The finding may also have implications for agricultural biotechnology, allowing researchers to manipulate the gene to improve the efficiency with which plants carry on photosynthesis.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>