Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers ID chlorophyll-regulating gene

24.09.2004


Researchers at the University of California, Berkeley, have identified a critical gene for plants that start their lives as seeds buried in soil. They say the burial of seeds was an adaptation that likely helped plants spread from humid, wet climates to drier, hostile environments.



In a study published in the Sept. 24 issue of the journal Science, the researchers describe how a gene called phytochrome-interacting factor 1, or PIF1, affects the production of protochlorophyll, a precursor of the chlorophyll used by plants to convert the sun’s energy into food during photosynthesis.

While a seed germinates under soil, in the dark, it is producing a controlled amount of protochlorophyll in preparation for its debut above ground. Much like a baby takes his or her first breath of air after emerging from the womb, seedlings must quickly convert protochlorophyll into chlorophyll once they are exposed to light for the first time. "It’s a delicate balancing act," said Peter Quail, professor of plant and microbial biology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "The young plant needs some protochlorophyll to get the ball rolling in photosynthesis. But if the plant accumulates too much of the compound, it leads to photo-oxidative stress, which is seen as bleaching on the leaves. The overproduction of protochlorophyll is like a ticking time bomb that is set off by the sun."


Quail is also research director of the Plant Gene Expression Center, a joint research center of the Agricultural Research Service of the U.S. Department of Agriculture and the University of California. The researchers targeted the PIF1 gene because it binds to phytochrome, a protein that is triggered by light and that controls a plant’s growth and development. The researchers disabled the PIF1 gene in the species Arabidopsis thaliana, a mustard plant, and compared the mutant seedlings with a control group of normal plants.

They grew the seedlings in the dark to mimic conditions beneath the soil, bringing groups out into the light at different time points throughout a six-day period. In nature, seeds are typically buried under 2 to 10 millimeters of soil, taking anywhere from two to seven days to germinate and break through the soil surface. "We found that mutated plants had twice the levels of protochlorophyll than normal, wild-type plants, suggesting that phytochrome acts as a negative regulator for protochlorophyll," said lead author Enamul Huq, who conducted the study while he was a post-doctoral researcher at UC Berkeley’s Department of Plant and Microbial Biology. "We also saw that the longer the seedlings were grown in the dark, the more likely they would die when they were exposed to light."

The mutated seedlings failed to switch off production of protochlorophyll throughout the germination period, so the longer the seedlings stayed in the dark, the more toxic the levels became. Huq, now an assistant professor of molecular cell and developmental biology at the University of Texas at Austin, pointed out that it is an "unbound" form of protochlorophyll that is toxic. Normal plants, he said, produce enough of an enzyme, called protochlorophyllide oxidoreductase, to bind with typical levels of protochlorophyll. But not enough of the enzyme is produced to handle the overabundance of unbound protochlorophyll churned out by the mutant seedlings.

The researchers say the ability of plants to precisely regulate production of protochlorophyll was probably an evolutionary development designed to ensure seed survival among higher plants. Primitive plants, such as mosses and some species of fern, thrive in moist, humid environments where their spores can stay safely above the soil surface. But all higher plants - from grasses to trees to agricultural crops such as wheat and corn - must have the ability to transition from the darkness of an underground environment to life above ground. "The development of seed burial in plants provided a long-term survival benefit through protection from predators and hostile surface conditions," said Quail. "The true test of our hypothesis would be to verify whether primitive plants have the PIF1 gene, and whether the gene is functional."

The finding may also have implications for agricultural biotechnology, allowing researchers to manipulate the gene to improve the efficiency with which plants carry on photosynthesis.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>