Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explore genome of methane-breathing microbe

21.09.2004


First complete DNA sequence of methanotroph reveals metabolic flexibility, suggests mechanisms for increasing its usefulness for biotechnology



The first complete genome sequence of a methane-breathing bacterium has revealed a surprising flexibility in its metabolism, suggesting an ability to live successfully in environments previously thought to be beyond its reach. The genome sequence of Methylococcus capsulatus – a species typical of methane-breathing bacteria commonly found in soils, landfills, sediments and peat bogs – includes a full and at times redundant toolkit of genes for using methane as an energy and carbon source. Such methane-consuming microbes are called methanotrophs.

The study, to be published in the October issue of PLoS Biology and posted online this week, found an unexpected flexibility in M. capsulatus metabolic pathways, hinting that the bacterium is capable of responding to changes in its environment by functioning through different chemical pathways for using methane. That finding, if confirmed by later experiments, may increase the bacterium’s potential as a biotech workhorse.


Methanotrophs play an important role in the global energy cycle because they consume methane, a gas that is produced mostly by chemical processes in landfills, in the guts of ruminant livestock such as cows, and by oil and natural gas processing plants.

In recent years, environmental scientists have shown increasing interest in methanotrophs because their use of methane as a sole source of carbon and energy could possibly be harnessed to play an important role in efforts to reduce methane emissions that are generated by biological sources such as ruminants and landfills.

The PLoS Biology study found that M. capsulatus has multiple pathways for different stages in the oxidation of methane. They also found genes that suggest metabolic flexibility, including the microbe’s likely ability to grow on sugars, to oxidize sulfur, and to live in reduced-oxygen environments. "We now have a much better picture of the relationship between M. capsulatus and its environment," says Naomi Ward, the paper’s first author. "It is important for us to know under what conditions methane can be removed from the ecosystem before it accumulates as a greenhouse gas."

Ward is an Assistant Investigator at The Institute for Genomic Research (TIGR), which led the genomic sequencing and conducted the analysis with scientific collaborators at the University of Bergen in Norway. While noting that "there is a clear need for experimental validation" of the metabolic pathways suggested by the genome, the study’s authors suggest that their analysis "deepens our understanding of methanotroph biology, its relationship to global carbon cycles, and its potential for biotechnological applications."

Johan Lillehaug, the Norwegian scientist who oversaw the University of Bergen’s role in the project, says the genome analysis found that M. capsulatus has a novel strategy for scavenging copper, an essential element for regulating methane oxidation. "We found that M. capsulatus is a good model for studying how microbes adapt to varying copper concentrations," he says, noting that M. capsulatus uses two separate systems – at high and low copper concentrations – for oxidizing methane.

Scientists say the organism’s potential significance for biotechnology include the use of bacteriophage (viruses that infect bacteria) that have made a home in the genome. Such phages could be exploited to genetically manipulate M. capsulatus to more efficiently produce microbial protein for commercial animal feed.

The study’s senior author, TIGR Investigator Jonathan Eisen, says the analysis of M. capsulatus also will help scientists learn more about some methane-fixing bacteria – those that live inside of animals such as clams and mussels in deep-sea methane seeps – that are extremely difficult to study. Such methane-fixing bacterial symbionts allow their host animals to feed off of the methane collected in seeps.

"The methane-fixing symbionts are very important ecologically but we know little about how they work since they live inside of animals and cannot be grown in pure cultures on their own,"says Eisen. "Since the symbionts are closely related evolutionarily and biologically to Methylococcus capsulatus, we can now use the information gleaned from this genome sequence to make predictions about the symbionts."

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>