Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists explore genome of methane-breathing microbe


First complete DNA sequence of methanotroph reveals metabolic flexibility, suggests mechanisms for increasing its usefulness for biotechnology

The first complete genome sequence of a methane-breathing bacterium has revealed a surprising flexibility in its metabolism, suggesting an ability to live successfully in environments previously thought to be beyond its reach. The genome sequence of Methylococcus capsulatus – a species typical of methane-breathing bacteria commonly found in soils, landfills, sediments and peat bogs – includes a full and at times redundant toolkit of genes for using methane as an energy and carbon source. Such methane-consuming microbes are called methanotrophs.

The study, to be published in the October issue of PLoS Biology and posted online this week, found an unexpected flexibility in M. capsulatus metabolic pathways, hinting that the bacterium is capable of responding to changes in its environment by functioning through different chemical pathways for using methane. That finding, if confirmed by later experiments, may increase the bacterium’s potential as a biotech workhorse.

Methanotrophs play an important role in the global energy cycle because they consume methane, a gas that is produced mostly by chemical processes in landfills, in the guts of ruminant livestock such as cows, and by oil and natural gas processing plants.

In recent years, environmental scientists have shown increasing interest in methanotrophs because their use of methane as a sole source of carbon and energy could possibly be harnessed to play an important role in efforts to reduce methane emissions that are generated by biological sources such as ruminants and landfills.

The PLoS Biology study found that M. capsulatus has multiple pathways for different stages in the oxidation of methane. They also found genes that suggest metabolic flexibility, including the microbe’s likely ability to grow on sugars, to oxidize sulfur, and to live in reduced-oxygen environments. "We now have a much better picture of the relationship between M. capsulatus and its environment," says Naomi Ward, the paper’s first author. "It is important for us to know under what conditions methane can be removed from the ecosystem before it accumulates as a greenhouse gas."

Ward is an Assistant Investigator at The Institute for Genomic Research (TIGR), which led the genomic sequencing and conducted the analysis with scientific collaborators at the University of Bergen in Norway. While noting that "there is a clear need for experimental validation" of the metabolic pathways suggested by the genome, the study’s authors suggest that their analysis "deepens our understanding of methanotroph biology, its relationship to global carbon cycles, and its potential for biotechnological applications."

Johan Lillehaug, the Norwegian scientist who oversaw the University of Bergen’s role in the project, says the genome analysis found that M. capsulatus has a novel strategy for scavenging copper, an essential element for regulating methane oxidation. "We found that M. capsulatus is a good model for studying how microbes adapt to varying copper concentrations," he says, noting that M. capsulatus uses two separate systems – at high and low copper concentrations – for oxidizing methane.

Scientists say the organism’s potential significance for biotechnology include the use of bacteriophage (viruses that infect bacteria) that have made a home in the genome. Such phages could be exploited to genetically manipulate M. capsulatus to more efficiently produce microbial protein for commercial animal feed.

The study’s senior author, TIGR Investigator Jonathan Eisen, says the analysis of M. capsulatus also will help scientists learn more about some methane-fixing bacteria – those that live inside of animals such as clams and mussels in deep-sea methane seeps – that are extremely difficult to study. Such methane-fixing bacterial symbionts allow their host animals to feed off of the methane collected in seeps.

"The methane-fixing symbionts are very important ecologically but we know little about how they work since they live inside of animals and cannot be grown in pure cultures on their own,"says Eisen. "Since the symbionts are closely related evolutionarily and biologically to Methylococcus capsulatus, we can now use the information gleaned from this genome sequence to make predictions about the symbionts."

Robert Koenig | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>