Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop fast track way to discover how cells are regulated

20.09.2004


Study published in Science also finds answers to the question: How do cells know to grow?



Researchers at Huntsman Cancer Institute (HCI) at the University of Utah and a collaborator at the University of California at Santa Cruz report they have developed a unique computational approach to investigate a regulatory network for gene expression that is implicated in cell growth and development. The study was published today in the journal Science.

"When studying the genome of any organism, be it yeast, worm, fly or human, scientists are faced with a problem -- the incredible number of genes," explains Susan Mango, Ph.D., an HCI investigator and leader of the research team. Mango’s research centered on a common garden-variety nematode worm, C. elegans, which shares many genes in common with humans. She explains that although worms appear simple, the worm genome is comprised of 20,000 genes. The human genome has over 30,000 genes. "When you look at the numbers, it becomes very clear that the old way -- studying one gene at a time -- is too slow. It becomes a problem of scale, with high throughput the only answer."


Mango’s team used a unique process that combines microarray technology with computational approaches to predict, based on probabilities, where in the genome a particular regulatory sequence might be found. With co-authors Wanyuan Ao, Ph.D.; Jeb Gaudet, Ph.D.; James Kent, Ph.D.; and Srikanth Mattumu, Mango searched C. elegans’s genome to find certain "punctuation marks" in the code that might be regulatory sequences responsible for the growth and development of the worm’s foregut, or pharynx. They were able to identify a total of seven candidate gene sequences; after testing, they discovered that of the seven, five proved to be bona fide regulatory sequences.

"Up to now, identifying transcription factor target genes has been a challenge to biologists. Using our unique algorithm, the Improbizer algorithm developed by James Kent, one of our collaborators, we were able to pick out regulatory sequences, very accurately and quickly," Mango says. "In addition, we also discovered a transcription factor known as DAF-12 that could bind to the regulatory sequence, and is absolutely necessary for the worm pharynx to respond to nutritional cues."

Mango’s work in the future will focus on questions relating to regulatory mechanisms in cell metabolism and cell differentiation, both important avenues of cancer research.

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>