Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop fast track way to discover how cells are regulated

20.09.2004


Study published in Science also finds answers to the question: How do cells know to grow?



Researchers at Huntsman Cancer Institute (HCI) at the University of Utah and a collaborator at the University of California at Santa Cruz report they have developed a unique computational approach to investigate a regulatory network for gene expression that is implicated in cell growth and development. The study was published today in the journal Science.

"When studying the genome of any organism, be it yeast, worm, fly or human, scientists are faced with a problem -- the incredible number of genes," explains Susan Mango, Ph.D., an HCI investigator and leader of the research team. Mango’s research centered on a common garden-variety nematode worm, C. elegans, which shares many genes in common with humans. She explains that although worms appear simple, the worm genome is comprised of 20,000 genes. The human genome has over 30,000 genes. "When you look at the numbers, it becomes very clear that the old way -- studying one gene at a time -- is too slow. It becomes a problem of scale, with high throughput the only answer."


Mango’s team used a unique process that combines microarray technology with computational approaches to predict, based on probabilities, where in the genome a particular regulatory sequence might be found. With co-authors Wanyuan Ao, Ph.D.; Jeb Gaudet, Ph.D.; James Kent, Ph.D.; and Srikanth Mattumu, Mango searched C. elegans’s genome to find certain "punctuation marks" in the code that might be regulatory sequences responsible for the growth and development of the worm’s foregut, or pharynx. They were able to identify a total of seven candidate gene sequences; after testing, they discovered that of the seven, five proved to be bona fide regulatory sequences.

"Up to now, identifying transcription factor target genes has been a challenge to biologists. Using our unique algorithm, the Improbizer algorithm developed by James Kent, one of our collaborators, we were able to pick out regulatory sequences, very accurately and quickly," Mango says. "In addition, we also discovered a transcription factor known as DAF-12 that could bind to the regulatory sequence, and is absolutely necessary for the worm pharynx to respond to nutritional cues."

Mango’s work in the future will focus on questions relating to regulatory mechanisms in cell metabolism and cell differentiation, both important avenues of cancer research.

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>