Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF Announces Six "FIBR" Awards To Tackle Some Of Biology’s Most Challenging Questions

17.09.2004


Multidisciplinary teams to study animal movement, genetic links to outside world


Tagged bees communicating on hive honeycomb. Through a functional analysis of social behavior in honey bees across the entire genome, the BeeSpace project will tackle one of the most hotly debated questions in biology: Are genes or environment the primary reason for a person’s or other animal’s behavior? Credit: Copyright Ken Lorenzen, University of California, Davis



How exactly do animals move? How do organisms adapt to newly acquired genes? What genetic forces draw members of an ecological community together? And does social behavior originate in nature, nurture or both? To tackle these and other major questions in biology, the National Science Foundation (NSF) today announced six new awards totaling nearly $30 million over five years from its Frontiers in Integrative Biological Research (FIBR) program.

Each of the five-year awards brings together scientists from many areas of biology and other fields to draw upon advances in genomics, ecology, enhanced information technology, and other fields — not to mention a robotic cockroach — to address significant under-studied or unanswered questions in biology.


"FIBR is one of the premier, crosscutting programs in biology at NSF," said Mary Clutter, head of NSF’s Biological Sciences directorate. "By undertaking highly innovative and broadly integrative approaches to research in biology, FIBR projects tackle grand challenges and promote the training of a new and fearless generation of scientists willing and able to bridge conventional disciplinary boundaries."

Several of this year’s FIBR awards will focus on the relationship between an organism’s genes and the outside world. One project will examine how a plant evaluates the various cues of seasonal change so that it blooms when it has the best chance to reproduce successfully. A second project will try to unravel "ecological genomics," identifying the genetic linkages that draw species together into complex communities and whole ecosystems.

Genes and environment both contribute to behavior, and another project will tackle the hotly debated nature or nurture question by analyzing social behavior as it relates to an entire genome — that of the honey bee.

Scientists now know that up to a quarter of all genes in many organisms are acquired from completely unrelated species, and a fourth FIBR project will study the processes by which organisms adapt to these newly acquired genes.

To explain the complex signals and feedbacks among neurons, muscles, the skeleton and the whole body that make movement possible and prevent animals from falling over, another project will take a multidisciplinary approach to the study of live, simulated and robotic insects. The sixth FIBR project will undertake a study of photosynthesis to understand how large and complex networks of molecules arise, persist and evolve as modular units throughout biology.

The six FIBR projects integrate varied expertise from several universities and research institutes. Combined, the six projects support dozens of investigators from 15 U.S. states and also involve scientists supported by several other countries.

The FIBR projects announced today include the following (see separate profiles for more detail):

"BeeSpace: An Interactive Environment for Analyzing Nature and Nurture in Societal Roles," examining how much of social behavior is determined by genes and how much is influenced by the environment — University of Illinois, Urbana-Champaign

"Ecological Genomics and Heritability: Consequences of Extended Phenotypes," studying the genetic forces that draw together members of an ecological community — Northern Arizona University (lead), University of Wisconsin, University of Tennessee, University of Tasmania (Australia)

"How Organisms Adapt to New Enzymes and New Pathways," understanding how organisms adapt to opportunities for rapid evolution through newly acquired genes — Brandeis University (lead), Boston University, University of Michigan

"Molecular Evolutionary Ecology of Developmental Signaling Pathways in Complex Environments," examining how plants weigh the various cues of seasonal change to make timing choices that are right for their climate — Brown University (lead), University of Wisconsin, North Carolina State University, Kansas State University, Max Planck Institute for Developmental Biology (Germany)

"Neuromechanical Systems Biology," studying the complex signals and feedbacks among neurons, muscles, the skeleton and the whole body that make movement possible — University of California, Berkeley (lead), Montana State University, University of Michigan, Cornell University, Princeton University

"A Systems Approach to Study Redox Regulation of Functions of Photosynthetic Organisms," studying how whole molecular networks may serve as modular units for function, regulation and evolution — Washington University, St. Louis (lead), Colgate University, Pacific Northwest National Laboratory, Saitama University (Japan)

Separate profiles below provide more details on each of the awards, along with principal investigators, team members and university media contacts.

David Hart | NSF News
Further information:
http://www.nsf.gov/bio/ef.htm
http://www.nsf.gov

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>