Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New malaria vector species discovered in Africa

16.09.2004


Malaria affects around 600 million people in the world and leads to an annual death toll of over 2 million. It is the world’s most widespread parasitic disease. It is caused by Plasmodium falciparum, a pathogen transmitted to humans by a mosquito. In Africa, where malaria is endemic, mosquitoes of the Anopheles genus are the only vectors of the disease. The many studies which have been devoted to them have led to the characterization of different species and the identification, among these, of vector species. To date, four groups of vectors of the genus Anopheles have been recorded on the African continent: Anopheles gambiae, A. funestus, A. nili and A. moucheti, each comprising a set of species, morphologically very similar although genetically different.

As part of the PAL+ programme, initiated by the Ministry of Research in 1999, IRD and OCEAC (Organisation de Coordination pour la lutte contre les endémies en Afrique Centrale) scientists in southern Cameroon studied the morphology and genetics of mosquitoes of this genus. They focused especially on the Anopheles nili group, with a geographical distribution that mainly covers Central Africa.

Investigations on larvae and adults collected along the banks of the River Ntem, in the South of Cameroon, found evidence of morphological variations between specimens, making it difficult to classify them within one of the three known species of the A. nili(2) group. This observation suggests the existence of a new variant called "Oveng form", from the name of the village where it was collected. Molecular biology techniques provided genetic confirmation of the differences observed and raised the "Oveng form" to the rank of species, with the name A. ovengensis. The discovery of the parasite P. falciparum in this new species shows that it is a new vector of malaria. A more detailed study under way should shed more light on its role in transmission of the disease.



This identification method, which combines taxonomy and genetics, was also applied, by the same team, to the study of another group of the Anopheles genus, A. funestus(3), in Cameroon. The researchers have thus found evidence of a new species, close to A. rivulorum, which is one of the nine already described within this group. As no presence of the parasite P. falciparum was detected, this new species, termed A. rivulorum-like, is not considered to be a vector. Research is currently continuing in order to provide more detailed information on the biology and geographical distribution of this new species.

These results emphasize the important place of taxonomy for studying malaria vectors. The knowledge acquired on these vectors will help understand better the epidemiology of the disease. The characterization and geographical distribution of each mosquito vector, the latter’s infestation rate and the mechanisms it deploys in transmission of the parasite to humans lead to improvements in anti-vector campaigns and hence to more effective prevention and control strategies. Similar studies are already under way in other regions of Africa with the long-term aim of establishing a comprehensive database that will hold information on the Anopheles vectors of malaria. Constance BOUTROLLE - IRD

(1) A group of species is defined as a set of species that are morphologically very similar yet genetically different.
(2) A.nili s.s and its variant termed "Congo form", A. somalicus and A.carnevalei.
(3) For further information on Anopheles funestus, consult scientific information sheet 110 of March 2000. http://www.ird.fr/fr/actualites/fiches/2000/fiche110.htm

Marie Guillaume | alfa
Further information:
http://www.paris.ird.fr
http://www.ird.fr/fr/actualites/fiches/2000/fiche110.htm

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>