Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain has center for detecting sound motion

16.09.2004


Close your eyes and acutely listen to the sounds around you, and you’ll find you’re able not only to accurately place the location of sounds in space, but their motion. Imagine then that, strangely, you suddenly became unable to distinguish the motion of sounds, even while you retained the ability to pinpoint their location. That’s exactly the experience of a patient reported by Christine Ducommun and her colleagues, who used studies of the patient to demonstrate conclusively for the first time that the brain has a specialized region for processing sound motion.



While it was known that the visual system has a specialized region for perceiving motion, it wasn’t known whether the auditory system has such a region--or whether sound location and motion are processed by the same circuitry. Previous studies of the capabilities of brain-damaged patients had found only that both their location and motion processing abilities were impaired, and animal and human neuroimaging studies had not been able to conclusively tease apart the two abilities.

Ducommun and her colleagues discovered the region by studying a woman who was to be operated on to alleviate intractable temporal lobe epilepsy. The operation would involve the removal of the affected regions of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG).


Perceptual tests before the operation showed her ability to perceive sound location and motion to be normal. In those tests, the researchers played white noise through headphones and simulated movement of the noise source, asking the patient to detect the noise location and how it seemed to be moving. The patient could also identify sounds such as a piano, dog, water, sneezing, and a saw.

Also, the researchers electrically stimulated the brain region to be removed--using electrodes already in place to monitor epileptic activity. They found that such stimulation of the right posterior STG led the patient to report that "there was a humming sound coming toward [her] face." When the researchers presented moving sounds to the patient while they recorded from the electrodes, they also detected the strongest activity in the right posterior STG.

After the operation, however, the patient showed what the researchers dubbed "cortical motion deafness." During perceptual tests, she stated "I do not perceive the sounds as moving at all, but rather as being completely stable." In contrast, she could still perceive the location of sounds and their identity. Also, all her visual abilities remained normal.

While her ability to detect sound motion improved over the next three years, she still remained deficient. According to the researchers, such improvement likely was due to partial recovery because of adaptive changes in her cortex.

According to the researchers, their findings "provide evidence of an auditory motion module within the right posterior STG" and that by analogy with the motion-detection region of the visual system this region "may constitute the core region for auditory motion analysis."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>