Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain has center for detecting sound motion

16.09.2004


Close your eyes and acutely listen to the sounds around you, and you’ll find you’re able not only to accurately place the location of sounds in space, but their motion. Imagine then that, strangely, you suddenly became unable to distinguish the motion of sounds, even while you retained the ability to pinpoint their location. That’s exactly the experience of a patient reported by Christine Ducommun and her colleagues, who used studies of the patient to demonstrate conclusively for the first time that the brain has a specialized region for processing sound motion.



While it was known that the visual system has a specialized region for perceiving motion, it wasn’t known whether the auditory system has such a region--or whether sound location and motion are processed by the same circuitry. Previous studies of the capabilities of brain-damaged patients had found only that both their location and motion processing abilities were impaired, and animal and human neuroimaging studies had not been able to conclusively tease apart the two abilities.

Ducommun and her colleagues discovered the region by studying a woman who was to be operated on to alleviate intractable temporal lobe epilepsy. The operation would involve the removal of the affected regions of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG).


Perceptual tests before the operation showed her ability to perceive sound location and motion to be normal. In those tests, the researchers played white noise through headphones and simulated movement of the noise source, asking the patient to detect the noise location and how it seemed to be moving. The patient could also identify sounds such as a piano, dog, water, sneezing, and a saw.

Also, the researchers electrically stimulated the brain region to be removed--using electrodes already in place to monitor epileptic activity. They found that such stimulation of the right posterior STG led the patient to report that "there was a humming sound coming toward [her] face." When the researchers presented moving sounds to the patient while they recorded from the electrodes, they also detected the strongest activity in the right posterior STG.

After the operation, however, the patient showed what the researchers dubbed "cortical motion deafness." During perceptual tests, she stated "I do not perceive the sounds as moving at all, but rather as being completely stable." In contrast, she could still perceive the location of sounds and their identity. Also, all her visual abilities remained normal.

While her ability to detect sound motion improved over the next three years, she still remained deficient. According to the researchers, such improvement likely was due to partial recovery because of adaptive changes in her cortex.

According to the researchers, their findings "provide evidence of an auditory motion module within the right posterior STG" and that by analogy with the motion-detection region of the visual system this region "may constitute the core region for auditory motion analysis."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>