Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetically modified bacterium as remedy for intestinal diseases


Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University are joining the fight against chronic intestinal disease with a genetically modified bacterium (Lactococcus lactis). The modified bacterium is able to produce medication right in the intestine. This is often the crux of the problem: a number of medicines are presumed to be effective, but until now it has been impossible to get them into the intestine in a simple manner. The researchers have shown that the genetically modified bacterium is able to manufacture the potential medicine, Trefoil Factors, in the intestines of diseased mice.

A typically Western disease

Chronic intestinal inflammations, such as Crohn’s disease, are occurring with increasing frequency, striking young adults in particular. In an advanced stage of such inflammations, patients can eat only via catheters.

Crohn’s disease has been on the rise in recent years: it is estimated that in Western Europe 2 persons in 1000 suffer from it. This typically Western disease appears almost exclusively in the industrialized world, and more often in cities than in the country.

Genetically modified Lactococcus

In its natural form, the Lactococcus lactis bacterium is a house, garden, and kitchen bacterium. Dairy product manufacturers use large quantities of the bacterium to ferment milk when making hard cheeses. The VIB researchers came up with the idea of using the bacterium as a producer of a remedy for intestinal inflammations. They placed the DNA with the code for a potential medicine inside the DNA of the bacterium. The genetically modified bacterium could then produce the therapeutic protein itself. In 2003, the VIB researchers succeeded in having the Lactococcus manufacture the anti-inflammatory agent IL-10. The IL-10 bacterium shows great promise in the battle against chronic inflammations and is now being tested on patients.

Klaas Vandenbroucke and his VIB colleagues, under the direction of Pieter Rottiers and Erik Remaut, took the earlier research further and placed the mouse gene with the code for mouse ‘trefoil factors’ (TFF) into the Lactococcus. TFF play an important role in the protection and healing of the epithelium − the inner wall − of the stomach- intestinal system. They also play a role in the construction of the stomach-intestinal tract. This structural function ensures that TFF never arrives in the intestine through oral administration, because along the way it attaches itself somewhere in the stomach-intestinal tract. This was also demonstrated in the tests on mice with acute enteritis: oral administration of TFF had no effect, but rectal administration did. Still, neither of the two methods of administration could match the impressive recovery of the mice following oral administration of the TFF bacteria.

The researchers also used the TFF bacteria to treat mice with chronic enteritis, which proved to be successful as well. This research confirms the findings from the earlier VIB research (under the direction of Lothar Steidler and Erik Remaut) concerning the therapeutic action of IL-10 bacteria. Thus, this method of working with genetically modified bacteria offers promising prospects for the treatment of both acute and chronic intestinal inflammation, and it can potentially be extended to other therapeutics as well.

Given that this research can raise a lot of questions for patients, we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Ann Van Gysel | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>