Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Hedgehog’ signal distinguishes lethal from localized prostate cancers

14.09.2004


Johns Hopkins researchers have discovered a possible way to distinguish lethal metastatic prostate cancers from those restricted to the walnut-size organ.



If future studies show their test -- measuring the level of activity of a signaling pathway called Hedgehog -- can predict which prostate cancers will spread, the results could revolutionize decision making processes for prostate cancer patients, the researchers say.

Most prostate cancers grow slowly, making "watchful waiting" a common alternative to immediate surgical removal of the prostate. However, there’s no sure-fire way to tell whose cancer will stay put in the gland, and whose will be aggressive and spread -- a development that despite aggressive treatment is usually fatal.


In the September 12 advance online edition of Nature, the Hopkins researchers report that only three of 12 localized prostate tumors obtained at surgery had detectable activity of the Hedgehog signaling pathway. In contrast, all 15 samples of metastatic prostate cancers, donated at patients’ deaths, had Hedgehog activity, which was 10 to 100 times higher than the highest levels seen in localized tumors. It remains to be seen whether Hedgehog activity in localized cancers will predict the ability to be metastatic.

The Hedgehog pathway produces a well-known growth and development signal during embryonic and fetal stages. It is also active in some cancers, including prostate, pancreatic and stomach cancers and the brain tumor medulloblastoma, but the researchers’ study is believed to provide the first evidence of its role in cancer’s spread.

"If we can use Hedgehog activity to predict whether a tumor will metastasize, we will have a great diagnostic tool, but manipulating the Hedgehog signaling pathway may also offer a completely new way to treat metastatic prostate cancer," says David Berman, M.D., Ph.D., assistant professor of pathology, urology and oncology at Johns Hopkins. "Right now nothing works very well -- you can help temporarily by cutting off testosterone, but the cancer always comes back."

In experiments with mice, fellow Sunil Kahadkar, M.D., showed that blocking the Hedgehog signal with daily injections of either a natural plant compound called cyclopamine or an antibody slowed and even reversed growth of highly aggressive rat prostate tumors implanted into the animals. Without treatment, the aggressive cancers, from a collection established by Hopkins’ John Isaacs, Ph.D., killed the animals within 18 days. A low dose of cyclopamine gave the animals an extra week to 10 days, but at a higher dose, these aggressive cancers not only didn’t metastasize, they actually disappeared and didn’t return.

In a similar set of experiments using human prostate cancers implanted into mice, treatment with cyclopamine also caused those tumors to regress and not return -- even months after treatment was stopped, the researchers report.

"Cyclopamine may not itself become an anti-cancer drug, in part because it’s already in the public domain -- it’s been known since the mid 1960s as the cause of one-eyed sheep in the western U.S.," says Philip Beachy, Ph.D., professor of molecular biology and genetics in Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "But our finding that cyclopamine inhibits Hedgehog signaling has provided the basis for drug companies’ very active efforts to develop new mimics of cyclopamine."

Right now, prostate cancer is evaluated largely by levels of prostate specific antigen (PSA) circulating in the blood. However, the ranges associated with various potential diagnoses -- non-cancerous growth, cancer, and aggressive cancer -- are fairly rough guides. And even under a microscope, aggressive prostate cancer doesn’t always look appreciably different from its wallflower counterpart.

In sharp contrast, levels of Hedgehog activity weren’t even close between still-localized tumors removed during prostatectomies and those from lethal metastatic prostate cancers, which were collected as part of a research program run by G. Steven Bova, M.D., assistant professor of pathology, to try to figure out what makes them so deadly.

To investigate Hedgehog’s role in metastasis, Karhadkar genetically engineered normal prostate cells to activate their Hedgehog signal. These cells then grew unchecked and formed aggressive tumors when implanted into mice, he found. He also discovered that triggering Hedgehog activity in a low-metastasizing rat prostate cancer line made it metastasize aggressively.

"Hedgehog isn’t just making these cells grow and divide more, the signal is really converting them from being indolent to being highly invasive and dangerous," says Beachy.

Exactly how the Hedgehog signal is involved in other cancers, including pancreatic and stomach cancers and medulloblastoma, a childhood brain cancer, is still being worked out. Critical in normal embryonic development, the signal is supposed to be turned off when cells take on the "grown-up" identity of a differentiated cell type.

Karhadkar, Beachy and Berman -- and a growing number of other scientists -- point to the involvement in cancer of embryonic proteins and pathways like Hedgehog as evidence that aggressive cancer in particular might form not by accumulation of genetic errors in regular cells, but because a smaller number of errors occurs in a more primitive cell, what might be called a "stem cell," in the tissues. And it would be these "cancer stem cells" -- transformed versions of the tissue’s normal stem cells -- that metastasize and travel through the body to form new tumors in distant places.

"Perhaps aggressive prostate cancers get started from a more primitive prostate cell or from a different initiating lesion than do prostate cancers that don’t metastasize," says Beachy. "It’s an idea we’re exploring."

The research was funded by the National Institutes of Health, the Prostate Cancer Foundation, and the Howard Hughes Medical Institute. Authors on the paper are Karhadkar, Bova, Nadia Abdallah, Surajit Dhara, Anirban Maitra, John Isaacs, Berman and Beachy, all of Johns Hopkins; and Dale Gardner of the U.S. Department of Agriculture’s Poisonous Plant Research Laboratory.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.nature.com/nature

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>