Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising gene discovery

10.09.2004


Researchers at the University of Bergen are now able to present new information on the HOX genes – the “software” to design animals. The findings are published in today’s issue of Nature.



Some years ago researchers at the Sars Centre for Marine Molecular Biology at the UoB discovered the smallest genome among vertebrates in a tiny urochordate called Oikopleura dioica. The organism is five millimetres long and the genome consists of only 70 million megabases (Mb). Although the human genome is forty times bigger in comparison, this organism makes an excellent model. Studies of the compact oikopleura-genome may contribute to shedding new light on the human genome, and the researchers have made several surprising discoveries so far.

In the research that serves as the basis for a new article in Nature researchers at the Sars have examined the so-called HOX genes. These are important genes that are common for all animals. They play a role in controlling the development from the fertilised egg to the formation of the general body structure. In humans these genes ensure that the fingers and the ribs take the right shape and length.


From insects to human beings HOX genes are lined up tightly together in the chromosomes like pearls on a string. It is also believed that this grouping and sequence have had great significance for the genes to function in a proper and coordinated way. In other words, the HOX gene sitting first in line on the chromosome controls for example the development of the back part of the brain, the second gene is responsible for the upper part of the neck and so on along the body axis. However, when the researchers at the Sars Centre found these genes in Oikopleura dioica, it turned out that this was not the case here. These genes are not lined up tightly at all, but it still seems that their function is about the same as in animals where the genes are closer together.

“This discovery is interesting because it indicates that the generally accepted theory about the position and function of HOX genes is too simple. This work also has relevance for understanding the development of body shapes in the animal world in general” says Rolf Brudvik Edvardsen, research fellow, who – together with three Master’s students – is a co-author of the article “Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica” in Nature.

The research is led by Professor Daniel Chourrout, director of the Sars Centre. The Centre has also cooperated with two genome centres in Paris and Berlin.

Professor Daniel Chourrout | alfa
Further information:
http://www.forskningsradet.no/
http://www.uib.no/fa/sars/

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>