Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral suspect for amphibian decline traced to human spread through bait

09.09.2004


What do Smallpox, AIDS, SARS, Monkeypox, West Nile Virus, Chestnut Blight, Dutch Elm Disease, Sudden Oak Death Syndrome, Sea Otter Mortality and Avian Flu have to do with the world-wide disappearance of frogs and salamanders, otherwise known as "Amphibian Decline"? And with bait shops?



These diseases and their pathogens, with the unsuspecting support of humans and our global activities, all have been involved in microbial invasions of sorts. The transportation and sale of live bait is the latest example of a seemingly innocent human activity that may be responsible for spreading such diseases with dramatic ecological consequences.

Evidence for this comes from the genetic analysis of an emerging virus that has been implicated as a cause of infectious disease in amphibian populations in the western U.S. The genetic study indicates that the virus may have been transmitted to remote locations through the vector of live bait – infected salamanders being distributed and introduced to uncontaminated environments by fishermen and interstate bait wholesalers.


A research article by a team (see end of release) headed by Arizona State University ecologist James Collins forthcoming in the Journal of Molecular Ecology finds that the wild incidences of a devastating iridovirus in Arizona and Colorado are all very similar genetically, indicating a recently emerged or introduced strain. The strain also closely matches viruses isolated from imported salamanders found in bait shops, indicating a possible source for the pathogen’s introduction.

The finding further exposes a complex picture of how emerging or invasive diseases are involved in amphibian decline -- the ongoing global disappearance of a broad group of animals -- and is additional evidence for how human activities such as farming and trade in live animals or biological products are affecting ecologies globally. "Amphibians are clearly vulnerable to environmental change, but the fact that they are being so broadly effected by emerging diseases is telling us that emerging diseases are having a major effect on the biosphere," said Collins.

The finding has come out of a $3 million National Science Foundation funded project to study "Emerging Wildlife Diseases: Threats to Amphibian Biodiversity." Under the grant, Collins and his team have been focusing on defining how important a role pathogens play among a host of possible causes in the decline of amphibian populations worldwide.

Early in the project, the team began to focus on two apparently "emerging" pathogens in particular – a chytrid fungus and an iridovirus – both unfamiliar organisms, though geographically widespread. The chytrid fungus in particular appears to be responsible for major population declines and even waves of mass extinction occurring in Central America, throughout the Rocky Mountain region in North America, and in Australia.

Collins’s lab was particularly focused on the iridovirus, which was responsible for observed mass die-offs of tiger salamanders in isolated stock ponds in southern Arizona. The team was initially mystified about how the virus was being introduced to the ponds, which can be isolated from each other by miles. "We were really interested in the ways in which it could be moving around, and whether or not it can jump between species," Collins said.

The salamander virus is related to another iridovirus strain that is endemic in frog populations. But preliminary analysis by the team has found that the salamander-killing virus is even closer to a virus found in sport fish (including rainbow trout), which in turn the researchers suspect resulted when the virus jumped from frogs to fish. The salamander virus however, is distinct from either of these and may be a recent development because of its lack of genetic diversity. "The basic story, based on the molecular analysis, is that the virus has a very recent history in the west and it is a history that suggests in its patterns that the viruses have been moved around in less than traditional ways – probably in anthropogenic ways," said Collins. "Bait is one of the ways it is probably getting around.

"We found evidence for this specific virus in salamanders in bait stores in Phoenix and also evidence of it in axolotls (salamanders that remain in the larval gilled form) in the Indiana University colony that are shipped all over the world for biomedical research." Whether the virus strain is lethal in its original Midwestern host populations is still not known, but it is lethal to tiger salamanders in the wild in the west. "Bait stores collect their animals in the Midwest, for the most part – Nebraska, West Texas, eastern New Mexico. We find virus that is molecularly indistinguishable from the bait stores in the wild in Colorado. Presumably it was shipped in from somewhere, perhaps Nebraska, into Colorado as bait. And imported bait is a big, multi-million dollar industry."

Though the effect of the virus on tiger salamanders is only a small part of the overall issue of amphibian decline, Collins thinks the team’s current findings have a larger significance and may provide a method for putting together other pieces of the puzzle. "This tiger salamander system is really a model for looking at the emergence of these diseases," he said.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>