Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mitochondrial Genes Cause Nuclear Mischief


While the nucleus of a cell may be its command headquarters, mitochondria are equally vital—they are the power plants of the cell, and without them all cellular activity would quickly and irrevocably come to a halt. Testifying to their origins as once free-living bacteria, mitochondria have their own DNA, comprising 37 genes in humans on a single circular chromosome. However, most of the mitochondria’s presumed ancestral genes have been taken into the cell’s nucleus, where they are under the strict control of their host.

The transplanted mitochondrial genes have been faithfully doing their job under new management since they were first appropriated, probably hundreds of millions of years ago. But in this issue, Miria Ricchetti and colleagues show that the over 200 mitochondrial genetic fragments also integrated into the nuclear genome may not be quite so benign. They have continued to invade the human genome, even into the present day, and a large proportion of them take up residence within nuclear genes, possibly disrupting them and causing human diseases.

Scanning the entire human genome, Ricchetti and colleagues found a total of 211 nuclear sequences of mitochondrial origin (NUMTs). Of these, they selected 42, which appeared to be the most recent integrations, for detailed study. Among several important observations, they found that these NUMTs were much less likely to be found in non-coding "junk" DNA and much more likely to insert themselves within highly active genes. Such insertions can cause disease, as shown by the recent discovery of a hemophilia patient with a NUMT interrupting his clotting factor gene.

Much remains to be learned about the functional and temporal dynamics of NUMT insertions, but their potential for harm suggests that many NUMTS, unlike much of the rest of the flotsam that litters our genome, may be selected against quickly. Combined with their differential distribution among human ethnic groups, this may make them valuable markers for tracking both long- and short-term trends in human evolution and migration.

Miria Ricchetti
Institut Pasteur
Paris, France
+33-14-061-3440 (fax)

Paul Ocampo | alfa
Further information:

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>