Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondrial Genes Cause Nuclear Mischief

07.09.2004


While the nucleus of a cell may be its command headquarters, mitochondria are equally vital—they are the power plants of the cell, and without them all cellular activity would quickly and irrevocably come to a halt. Testifying to their origins as once free-living bacteria, mitochondria have their own DNA, comprising 37 genes in humans on a single circular chromosome. However, most of the mitochondria’s presumed ancestral genes have been taken into the cell’s nucleus, where they are under the strict control of their host.



The transplanted mitochondrial genes have been faithfully doing their job under new management since they were first appropriated, probably hundreds of millions of years ago. But in this issue, Miria Ricchetti and colleagues show that the over 200 mitochondrial genetic fragments also integrated into the nuclear genome may not be quite so benign. They have continued to invade the human genome, even into the present day, and a large proportion of them take up residence within nuclear genes, possibly disrupting them and causing human diseases.

Scanning the entire human genome, Ricchetti and colleagues found a total of 211 nuclear sequences of mitochondrial origin (NUMTs). Of these, they selected 42, which appeared to be the most recent integrations, for detailed study. Among several important observations, they found that these NUMTs were much less likely to be found in non-coding "junk" DNA and much more likely to insert themselves within highly active genes. Such insertions can cause disease, as shown by the recent discovery of a hemophilia patient with a NUMT interrupting his clotting factor gene.


Much remains to be learned about the functional and temporal dynamics of NUMT insertions, but their potential for harm suggests that many NUMTS, unlike much of the rest of the flotsam that litters our genome, may be selected against quickly. Combined with their differential distribution among human ethnic groups, this may make them valuable markers for tracking both long- and short-term trends in human evolution and migration.

CONTACT:
Miria Ricchetti
Institut Pasteur
Paris, France
+33-14-568-8567
+33-14-061-3440 (fax)
mricch@pasteur.fr

Paul Ocampo | alfa
Further information:
http://www.plos.org
http://www.plosbiology.org
http://www.pasteur.fr

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>