Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug factories for drugs: quality control holds key to quantity

07.09.2004


Tiny types of soil bugs already make many of the products we use in washing detergents, foods, and waste treatment, but scientists now hope that similar bacteria will also make the vaccines and drugs of the future, according to new research presented today (Tuesday, 07 September 2004) at the Society for General Microbiology’s 155th Meeting at Trinity College Dublin.



Researchers from the Institute of Cell and Molecular Studies at Newcastle University have successfully produced small quantities of a promising new vaccine for anthrax using Bacillus bacteria which have been modified to produce human medicines. “Many people already use enzymes produced by these bacteria to wash their clothes,” says Professor Colin Harwood of Newcastle University. “But the bacteria which make these enzymes, so useful for digesting dirt, have very efficient quality control systems which spot rogue proteins and enzymes and destroy them. This control mechanism stops us using these bacteria to make large quantities of the pure proteins we need for use in vaccines and other medicines.”

The scientists have spent the last ten years, working with a Europe-wide group of 11 research laboratories, discovering how bacteria move enzymes and proteins from inside their cells, where they are made, to the outside world, where they are needed.


An important component of the system for moving proteins across the cell membrane turns out to be a quality control mechanism which recognises and breaks down foreign proteins. The bacteria need this checking mechanism to survive in competitive natural environments such as the soil. But this same checking system means that any drug production is disappointingly low if we try to use the bacteria to make useful medicines.

“Bacilli could make authentic versions of some of the important proteins we have identified from the results of the Human Genome Project, at concentrations of 20 grammes per litre - which is commercially acceptable,” says Prof Harwood. “These bacteria are wonderfully efficient factories, and using them would reduce purification costs and provide structurally authentic proteins.”

“A better understanding of bacteria will allow us to produce human and animal medicines,” says Prof Harwood. “However, since the protein secretion apparatus and quality control systems are also essential for the bacteria’s survival, they also give us new targets for antibiotic drugs.”

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>