Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug factories for drugs: quality control holds key to quantity

07.09.2004


Tiny types of soil bugs already make many of the products we use in washing detergents, foods, and waste treatment, but scientists now hope that similar bacteria will also make the vaccines and drugs of the future, according to new research presented today (Tuesday, 07 September 2004) at the Society for General Microbiology’s 155th Meeting at Trinity College Dublin.



Researchers from the Institute of Cell and Molecular Studies at Newcastle University have successfully produced small quantities of a promising new vaccine for anthrax using Bacillus bacteria which have been modified to produce human medicines. “Many people already use enzymes produced by these bacteria to wash their clothes,” says Professor Colin Harwood of Newcastle University. “But the bacteria which make these enzymes, so useful for digesting dirt, have very efficient quality control systems which spot rogue proteins and enzymes and destroy them. This control mechanism stops us using these bacteria to make large quantities of the pure proteins we need for use in vaccines and other medicines.”

The scientists have spent the last ten years, working with a Europe-wide group of 11 research laboratories, discovering how bacteria move enzymes and proteins from inside their cells, where they are made, to the outside world, where they are needed.


An important component of the system for moving proteins across the cell membrane turns out to be a quality control mechanism which recognises and breaks down foreign proteins. The bacteria need this checking mechanism to survive in competitive natural environments such as the soil. But this same checking system means that any drug production is disappointingly low if we try to use the bacteria to make useful medicines.

“Bacilli could make authentic versions of some of the important proteins we have identified from the results of the Human Genome Project, at concentrations of 20 grammes per litre - which is commercially acceptable,” says Prof Harwood. “These bacteria are wonderfully efficient factories, and using them would reduce purification costs and provide structurally authentic proteins.”

“A better understanding of bacteria will allow us to produce human and animal medicines,” says Prof Harwood. “However, since the protein secretion apparatus and quality control systems are also essential for the bacteria’s survival, they also give us new targets for antibiotic drugs.”

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>