Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabodies act as guided missiles targeted to mammary tumor growth

02.09.2004


A mini-antibody bearing a payload of tumor-busting radiation thwarts the growth of human breast cancer in laboratory animals, according to research published in the September 1 issue of the journal Cancer Research.

The research shows that a diabody, an antibody surrogate just one third the size of native antibodies, can be used effectively as a targeting vehicle for radioimmunotherapy, said Gregory Adams, Ph.D., associate member of the Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pa.

Diabodies are genetically engineered dimeric proteins produced in E. coli bacteria that contain the antigen-recognizing portion of antibodies formed by immune system cells to combat disease. The mini-antibody developed by Adams and colleagues, C6.5K-A, is a protein substitute for larger, naturally produced antibodies that specifically target the HER2/neu human tumor-associated antigen. When loaded with the beta-emitting radioisotope yttrium-90, C6.5K-A significantly inhibits the growth rate of human breast tumor xenografts in mice. "The diabodies bound to the HER2 receptor produced by certain breast tumor cells." said Adams, the lead author on the paper. "Imaging indicated that the diabody was concentrated in the mammary tumors and in the kidney where it was excreted from the body."



Since diabodies are so much smaller than native antibodies, the genetically engineered protein is cleared much quicker from the body, Adams said. However, the affinity that the diabody has for its antigen target is so great that a significant amount of the cell-killing radioactive protein lodges in the mammary tumor cells. "The dimeric C6.5K-A binds to its target antigen 40 times more tenaciously than its individual monomeric components, thus promoting prolonged retention in antigen-laden tumors. At the same time, its small size enables it to efficiently find and penetrate these tumors," Adams said.

Using the HER2 receptor protein on tumor cell membranes as a portal into the cells, the radioactive diabody gained access inside tumors to induce cell death and restrict tumor growth.

Although radioactive C6.5K-A was effective against the human mammary tumors growing in mice, the biotherapeutic fell short of inhibiting human ovarian tumor cell growth in the lab animals. "The kinetics of the HER2 receptor on the mammary tumor cells are favorable to taking up the diabody," Adams said. "Once the beta-emitter is delivered inside the mammary tumor cells, the radiation causes intracellular damage that probably triggers p53 driven apoptosis."

The mammary tumor cells contained the normally functioning p53 tumor suppressor gene, while the p53-null ovarian tumor cells used in the studies lacked the protective action of that apoptosis-inducing gene. The mammary tumor cells also internalized the HER2-bound diabody fifteen times more rapidly than did the ovarian tumor cells.

Ongoing studies by Adams and his colleagues are aimed at determining refinements in the radioisotope-bearing diabody that will optimize tumor growth inhibition or reduce tumor mass while preserving the health and function of kidneys.

Russell Vanderboom, PhD | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>