Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabodies act as guided missiles targeted to mammary tumor growth

02.09.2004


A mini-antibody bearing a payload of tumor-busting radiation thwarts the growth of human breast cancer in laboratory animals, according to research published in the September 1 issue of the journal Cancer Research.

The research shows that a diabody, an antibody surrogate just one third the size of native antibodies, can be used effectively as a targeting vehicle for radioimmunotherapy, said Gregory Adams, Ph.D., associate member of the Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pa.

Diabodies are genetically engineered dimeric proteins produced in E. coli bacteria that contain the antigen-recognizing portion of antibodies formed by immune system cells to combat disease. The mini-antibody developed by Adams and colleagues, C6.5K-A, is a protein substitute for larger, naturally produced antibodies that specifically target the HER2/neu human tumor-associated antigen. When loaded with the beta-emitting radioisotope yttrium-90, C6.5K-A significantly inhibits the growth rate of human breast tumor xenografts in mice. "The diabodies bound to the HER2 receptor produced by certain breast tumor cells." said Adams, the lead author on the paper. "Imaging indicated that the diabody was concentrated in the mammary tumors and in the kidney where it was excreted from the body."



Since diabodies are so much smaller than native antibodies, the genetically engineered protein is cleared much quicker from the body, Adams said. However, the affinity that the diabody has for its antigen target is so great that a significant amount of the cell-killing radioactive protein lodges in the mammary tumor cells. "The dimeric C6.5K-A binds to its target antigen 40 times more tenaciously than its individual monomeric components, thus promoting prolonged retention in antigen-laden tumors. At the same time, its small size enables it to efficiently find and penetrate these tumors," Adams said.

Using the HER2 receptor protein on tumor cell membranes as a portal into the cells, the radioactive diabody gained access inside tumors to induce cell death and restrict tumor growth.

Although radioactive C6.5K-A was effective against the human mammary tumors growing in mice, the biotherapeutic fell short of inhibiting human ovarian tumor cell growth in the lab animals. "The kinetics of the HER2 receptor on the mammary tumor cells are favorable to taking up the diabody," Adams said. "Once the beta-emitter is delivered inside the mammary tumor cells, the radiation causes intracellular damage that probably triggers p53 driven apoptosis."

The mammary tumor cells contained the normally functioning p53 tumor suppressor gene, while the p53-null ovarian tumor cells used in the studies lacked the protective action of that apoptosis-inducing gene. The mammary tumor cells also internalized the HER2-bound diabody fifteen times more rapidly than did the ovarian tumor cells.

Ongoing studies by Adams and his colleagues are aimed at determining refinements in the radioisotope-bearing diabody that will optimize tumor growth inhibition or reduce tumor mass while preserving the health and function of kidneys.

Russell Vanderboom, PhD | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>