Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Gene Expression in Lymphoid Cells Can Determine Lymphoma Cancer

02.09.2004


Analyzing the expression levels of the gene CDK9 (cyclin dependent kinase) and its attached molecule CYCLIN T1 in lymphoid cells in a sample of blood can accurately pinpoint lymphoma, according to researchers at Temple University’s Sbarro Institute for Cancer Research and Molecular Medicine and the Department of Human Pathology and Oncology at the University of Siena in Italy.



Their study, “CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation,” appears in the Journal of Pathology (Volume 203, Issue 4).

Lymphomas are generally difficult to diagnose since no single test currently exists to sufficiently establish their presence. Clinical practice often revolves around a pathologist looking for changes in normal lymph node architecture and cell characteristics through a series of tests, such as blood tests, x-rays, computerized tomography (CT) scans, magnetic resonance imaging (MRI) and bone marrow biopsy.


“There are many types and subtypes of lymphoma, some of which are easy to detect, but many that are very difficult to identify,” says Antonio Giordano, M.D., Ph.D., director of the Sbarro Institute at Temple and one of the study’s principal investigators.

The researchers found that by taking a sample of blood and doing immunohistochemical analysis for the expression of CDK9 and CYCLIN T1, they were able to accurately pinpoint the type of lymphoma—Hodgkins or non-Hodgkins—as well as its stage of advancement. Non-Hodgkins lymphoma is the sixth-most common cancer in the United States.

“Basically, this new method is a very powerful tool in determining the presence of cancer by analyzing these two molecules in the lymphoid tissue,” explains Giordano, an internationally recognized researcher in the genetics of cancer and gene therapy. “The change of levels of CDK9 and CYCLIN T1 in lymphoid cells shows a correlation with activity of the cancer. The higher the expression of the gene and the attached molecule in the blood sample, the more likely for lymphoid cancer.”

CDK9 was originally isolated by Giordano, who at the time was a researcher in Temple’s Fels Cancer Institute, and his team in 1992. A member of a family of kinases, CDK9 was originally referred to as PITALRE, the name of the amino acid sequence that is similar in all members of this kinase family.

“We were screening a human DNA library in order to look for members of this family, and we found CDK9, a gene that encodes for a protein that has the size of 43 kilodaltons,” says Giordano, who is also co-director of the Center for Biotechnology in Temple’s College of Science and Technology.

Over the next 10 years, CDK9 would prove to be a “multi-functional” gene, playing many different roles. According to Giordano, among the many functions of CDK9 that have been discovered, one of the most interesting is the role of this kinase in cellular differentiation, particularly muscle differentiation.

“In practical terms, when we overexpress this protein, we are able to promote myogenic differentiation by enhancing the myoD function,” says Giordano, who also discovered the tumor suppressing gene Rb2/p130. “Our studies have demonstrated that in human tissue, CDK9 is a very important player in specialized tissue, as we see in this study with lymphoid tissue.”

Clinical work for the study was coordinated by Giordano and performed at the Department of Human Pathology and Oncology at the University of Siena in Italy in collaboration with professors Lorenzo Leoncini and Piero Tosi. The researchers believe that this unique method of using the immunohistochemical analysis of a blood sample for the expression of CDK9 and CYCLIN T1 will become an important diagnostic tool in the battle against lymphoma.

The study was supported by the Italian Ministry for Education, Universities and Research and Sbarro Health Research Organization, National Institutes of Health and Petruccelli–American Italian Research Scholarship.

NOTE: A PDF copy of the study is available through Temple University’s Office of Communications

| newswise
Further information:
http://www.temple.edu
http://www.shro.org
http://www.temple.edu/news_media/hkg696.html

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>