Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Analysis of Gene Expression in Lymphoid Cells Can Determine Lymphoma Cancer


Analyzing the expression levels of the gene CDK9 (cyclin dependent kinase) and its attached molecule CYCLIN T1 in lymphoid cells in a sample of blood can accurately pinpoint lymphoma, according to researchers at Temple University’s Sbarro Institute for Cancer Research and Molecular Medicine and the Department of Human Pathology and Oncology at the University of Siena in Italy.

Their study, “CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation,” appears in the Journal of Pathology (Volume 203, Issue 4).

Lymphomas are generally difficult to diagnose since no single test currently exists to sufficiently establish their presence. Clinical practice often revolves around a pathologist looking for changes in normal lymph node architecture and cell characteristics through a series of tests, such as blood tests, x-rays, computerized tomography (CT) scans, magnetic resonance imaging (MRI) and bone marrow biopsy.

“There are many types and subtypes of lymphoma, some of which are easy to detect, but many that are very difficult to identify,” says Antonio Giordano, M.D., Ph.D., director of the Sbarro Institute at Temple and one of the study’s principal investigators.

The researchers found that by taking a sample of blood and doing immunohistochemical analysis for the expression of CDK9 and CYCLIN T1, they were able to accurately pinpoint the type of lymphoma—Hodgkins or non-Hodgkins—as well as its stage of advancement. Non-Hodgkins lymphoma is the sixth-most common cancer in the United States.

“Basically, this new method is a very powerful tool in determining the presence of cancer by analyzing these two molecules in the lymphoid tissue,” explains Giordano, an internationally recognized researcher in the genetics of cancer and gene therapy. “The change of levels of CDK9 and CYCLIN T1 in lymphoid cells shows a correlation with activity of the cancer. The higher the expression of the gene and the attached molecule in the blood sample, the more likely for lymphoid cancer.”

CDK9 was originally isolated by Giordano, who at the time was a researcher in Temple’s Fels Cancer Institute, and his team in 1992. A member of a family of kinases, CDK9 was originally referred to as PITALRE, the name of the amino acid sequence that is similar in all members of this kinase family.

“We were screening a human DNA library in order to look for members of this family, and we found CDK9, a gene that encodes for a protein that has the size of 43 kilodaltons,” says Giordano, who is also co-director of the Center for Biotechnology in Temple’s College of Science and Technology.

Over the next 10 years, CDK9 would prove to be a “multi-functional” gene, playing many different roles. According to Giordano, among the many functions of CDK9 that have been discovered, one of the most interesting is the role of this kinase in cellular differentiation, particularly muscle differentiation.

“In practical terms, when we overexpress this protein, we are able to promote myogenic differentiation by enhancing the myoD function,” says Giordano, who also discovered the tumor suppressing gene Rb2/p130. “Our studies have demonstrated that in human tissue, CDK9 is a very important player in specialized tissue, as we see in this study with lymphoid tissue.”

Clinical work for the study was coordinated by Giordano and performed at the Department of Human Pathology and Oncology at the University of Siena in Italy in collaboration with professors Lorenzo Leoncini and Piero Tosi. The researchers believe that this unique method of using the immunohistochemical analysis of a blood sample for the expression of CDK9 and CYCLIN T1 will become an important diagnostic tool in the battle against lymphoma.

The study was supported by the Italian Ministry for Education, Universities and Research and Sbarro Health Research Organization, National Institutes of Health and Petruccelli–American Italian Research Scholarship.

NOTE: A PDF copy of the study is available through Temple University’s Office of Communications

| newswise
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>