Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor Myosin VI moves ’hand over hand,’ researchers say

01.09.2004


Myosin VI (blue) is a molecular motor that walks "backwards" on filaments of actin (red). By labeling a myosin VI on the head (green), or on the neck (red), and localizing the dye within a few nanometers, scientists determined that myosin walks "hand-over-hand," while causing a part of the protein to come undone. Graphic courtesy Paul Selvin


In the human body, hundreds of different types of biomolecular motors help carry out such essential tasks as muscle contraction, moving chromosomes during cell division, and reloading nerve cells so they can repeatedly fire.

How these little proteins perform their duties is becoming clearer to scientists using an extremely sensitive measurement technique. Myosin VI, they found, moves by the same “hand-over-hand” mechanism as two other molecular motors, myosin V and kinesin.

“Now that a third molecular motor has been found to move in the same hand-over-hand fashion, the argument for a rival ‘inchworm’ motion is getting pretty weak,” said Paul Selvin, a professor of physics at the University of Illinois at Urbana-Champaign and a co-author of a paper to appear in the Journal of Biological Chemistry.



Myosin VI is a reverse-direction molecular motor that moves materials to various locations within a living cell. Like the related protein myosin V, myosin VI has two “arms” connected to a “body.” The tiny molecule converts chemical energy into mechanical motion, and transports its load by “stepping” along polarized filaments of actin – but in the opposite direction from other myosin variants.

“Studies have suggested two main models for the stepping movement,” Selvin said. “One is the hand-over-hand model in which the two arms alternate in the lead. The other model is the inchworm model in which one arm always leads.”

To examine the myosin VI stepping mechanism, the researchers applied the same technique that was used to study both myosin V and kinesin. Called FIONA – Fluorescence Imaging with One Nanometer Accuracy – the measurement technique can track the position of a single molecule to within 1.5 nanometers. (One nanometer is a billionth of a meter, or about 10,000 times smaller than the width of a human hair).

“First, we attached a small fluorescent dye to one of the arms and took a picture with a digital camera attached to a microscope to find exactly where the dye was,” Selvin said. “Then we fed the myosin a little food called adenosine triphosphate, and it took a step. We took another picture, located the dye, and measured how far the dye moved.”

By examining the step size, the scientists could determine whether the protein used a hand-over-hand mechanism or an inchworm mechanism for movement. “The average step size for the myosin VI arm was approximately 60 nanometers, while the molecule’s center of mass moved only half that distance,” Selvin said. “This clearly indicated that a
hand-over-hand model was being employed.”

Surprisingly, myosin VI has a step size that is highly variable, but on average is nearly as large as that of myosin V, which has a lever arm that is three times longer. “For myosin VI to reach the same distance, the molecule must somehow come apart and then snap together again,” Selvin said. “To understand how it accomplishes this feat will require further study.”

The co-authors of the paper are Selvin, Hyokeun Park and Ahmet Yildiz at Illinois, and Li-Qiong Chen, Dan Safer, H. Lee Sweeney and Zhaohui Yang at the University of Pennsylvania. The National Institutes of Health funded the work.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>