Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mystery Of Sterility Of The Garlic Plant


Restoration of fertility to the now-sterile garlic plant has been accomplished by Israeli researchers, thus opening the way to wide-ranging scientific research that could lead to improved yields and quality.

Garlic is one of the most popular vegetable condiments in the world. Its origins are in Central Asia, where in the past, several fertile or semi-fertile garlic plants were identified. However, the cultivated, commercial plants we know today are totally sterile and are propagated only asexually. The reasons for this as well as the means to restore the plants’ fertility have remained unknown.

Recently, however, a team of researchers headed by Prof. Haim Rabinowitch, rector of the Hebrew University of Jerusalem and a researcher in the university’s Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, and Dr. Rina Kamenetsky of the Volcani Institute has succeeded in solving this ancient puzzle. Seven years of research that included study of the morphology and the developmental physiology of the plant have resulted in a simple solution to the garlic’s infertility.

In its growth process, the garlic plant’s bulbing and flowering occur simultaneously in the spring -- both processes regulated by temperature and day length. During generations of cultivation, farmers selected those plants that displayed early ripening and large bulbs. The rapid growth of the bulbs drew most of the nutrient and energy resources of the plant, leaving little for blossoming. This shortage resulted in abortion of the floral bud at a very early stage of development, and hence complete sterility. In those cases in which the plants succeeded in producing a floral stem, the developing flower buds were strangulated by the small bulbs at the top that were developing rapidly under conditions of lengthening days.

Once the Hebrew University and Volcani Institute researchers understood the conditions that were contributing to the plants’ sterility, they experimented with growing garlic plants under controlled conditions in which temperature and daylight were regulated. In this way they succeeded in delaying the bulb growth in favor of flowering, regaining fertility and production of seeds. “In creating this flowering and seed production, we were able to open up the possibilities for genetic diversity of the garlic plant which had remain frozen for thousands of years,” said Prof. Rabinowitch.

The work by the Israeli scientists has been hailed as “landmark research” by experts abroad and opens the possibility for new physiological and genetic research on one of the most important vegetable condiments in the world. The seeds obtained in the experimental work can now be utilized in breeding programs to produce various desired characteristics through the use of classical techniques.

Among the scientific goals are the development of plants that would be resistant to various pests and plant diseases, provide improved yields and quality, be adaptable to various climatic conditions, have adjustable seasonal growth patterns, and show increased storage life.

The researchers are now turning their attention to investigating the molecular basis of the flowering process and to identifying the genes involved in the control of that flowering. The results of the research appeared recently in one of the leading American horticultural journals, the Journal of the American Society for Horticultural Science.

Jerry Barach | Hebrew University
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>