Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery Of Sterility Of The Garlic Plant

01.09.2004


Restoration of fertility to the now-sterile garlic plant has been accomplished by Israeli researchers, thus opening the way to wide-ranging scientific research that could lead to improved yields and quality.

Garlic is one of the most popular vegetable condiments in the world. Its origins are in Central Asia, where in the past, several fertile or semi-fertile garlic plants were identified. However, the cultivated, commercial plants we know today are totally sterile and are propagated only asexually. The reasons for this as well as the means to restore the plants’ fertility have remained unknown.

Recently, however, a team of researchers headed by Prof. Haim Rabinowitch, rector of the Hebrew University of Jerusalem and a researcher in the university’s Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, and Dr. Rina Kamenetsky of the Volcani Institute has succeeded in solving this ancient puzzle. Seven years of research that included study of the morphology and the developmental physiology of the plant have resulted in a simple solution to the garlic’s infertility.



In its growth process, the garlic plant’s bulbing and flowering occur simultaneously in the spring -- both processes regulated by temperature and day length. During generations of cultivation, farmers selected those plants that displayed early ripening and large bulbs. The rapid growth of the bulbs drew most of the nutrient and energy resources of the plant, leaving little for blossoming. This shortage resulted in abortion of the floral bud at a very early stage of development, and hence complete sterility. In those cases in which the plants succeeded in producing a floral stem, the developing flower buds were strangulated by the small bulbs at the top that were developing rapidly under conditions of lengthening days.

Once the Hebrew University and Volcani Institute researchers understood the conditions that were contributing to the plants’ sterility, they experimented with growing garlic plants under controlled conditions in which temperature and daylight were regulated. In this way they succeeded in delaying the bulb growth in favor of flowering, regaining fertility and production of seeds. “In creating this flowering and seed production, we were able to open up the possibilities for genetic diversity of the garlic plant which had remain frozen for thousands of years,” said Prof. Rabinowitch.

The work by the Israeli scientists has been hailed as “landmark research” by experts abroad and opens the possibility for new physiological and genetic research on one of the most important vegetable condiments in the world. The seeds obtained in the experimental work can now be utilized in breeding programs to produce various desired characteristics through the use of classical techniques.

Among the scientific goals are the development of plants that would be resistant to various pests and plant diseases, provide improved yields and quality, be adaptable to various climatic conditions, have adjustable seasonal growth patterns, and show increased storage life.

The researchers are now turning their attention to investigating the molecular basis of the flowering process and to identifying the genes involved in the control of that flowering. The results of the research appeared recently in one of the leading American horticultural journals, the Journal of the American Society for Horticultural Science.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>