Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans march to a faster genetic ’drummer’ than primates

31.08.2004


Research runs counter to Darwin’s theory of natural selection



A team of biochemists from UC Riverside published a paper in the June 11 issue of the Journal of Molecular Biology that gives one explanation for why humans and primates are so closely related genetically, but so clearly different biologically and intellectually.
It is an established fact that 98 percent of the DNA, or the code of life, is exactly the same between humans and chimpanzees. So the key to what it means to be human resides in that other 2 percent.

According to Achilles Dugaiczyk, professor of Biochemistry at UCR, one important factor resides in something called Alu DNA repeats, sometimes called "junk DNA." These little understood sections of DNA are volatile, and prone to sudden mutations, or genomic rearrangements. At times the results are beneficial in that they give rise to new proteins or an altered gene regulation. Sometimes the mutations result in the growth of a cancer tumor, or some other genetic defect.



The team, which also included Rosaleen Gibbons, Lars J. Dugaiczyk, Thomas Girke, Brian Duistermars and Rita Zielinski, identified over 2,200 new human specific Alu DNA repeats that are absent from the chimpanzee and most likely other primates.

"The explosive expansion of the DNA repeats and the resulting restructuring of our genetic code may be the clue to what makes us human," Dugaiczyk said. "During the same amount of time, humans accumulated more genetic novelties than chimpanzees, making the human/chimpanzee genetic distance larger than that between the chimpanzee and gorilla."

Metaphorically speaking, Dugaiczyk said, "Humans and primates march to the rhythm of a drum that looks identical; the same size, shape and sound. But, the human drum beats faster."

This chemical analysis of DNA structures also showed something else. The spread of the Alu DNA repeats was written into the chemistry of human chromosomes. The process was not random, Dugaiczyk said, and it was not subject to an environmental "natural selection," separating winners and losers as theorized by Darwin. "We are not contending that natural selection does not exist, but that in this instance it is a chemical process within human chromosomes that explains why humans have an explosive expansion of DNA repeats, and primates do not," Dugaiczyk said.

Determining the genetic differences between humans and primates is important for several reasons, Dugaiczyk said, including advancing knowledge about how life developed and evolved on earth. Other benefits include making it easier to identifying human predisposition to genetic disease, by comparing humans with other primate species. A third possible benefit is to underline the importance of protecting endangered primate species.

Kris Lovekin | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>