Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some treatment plants effectively remove drugs, hormones from wastewater

26.08.2004


Given the number of human pharmaceuticals and hormones that make their way into wastewater, some people are concerned about how well treatment plants that turn sewage into reusable water remove these chemicals.



New research shows that wastewater treatment plants that employ a combination of purifying techniques followed by reverse osmosis - a process by which water is forced through a barrier that only water can pass - do a good job of removing chemicals that may elicit health effects.

Details were presented today (Aug. 25), at the 228th American Chemical Society meeting in Philadelphia as part of a special symposium on pharmaceuticals and personal care products in the environment.


"As the demand for water continues to increase, especially in arid areas, there’s greater pressure placed on an already shrinking water supply," says Joel Pedersen, a University of Wisconsin-Madison environmental chemist, who co-authored a paper detailing this research. "More people are considering the reuse of water."

Wastewater reclamation plants - treatment plants that use additional processes to purify sewage - are already in operation. They produce water to irrigate crops, highway landscaping, golf courses and parks, as well as to be reintroduced into the ground for groundwater recharge, which ultimately could end up in drinking-water supplies.

While this treatment process has the promise to save an evaporating natural resource, Pedersen points out that little is known about just how well water-reclamation plants remove the pharmaceuticals and hormones that typically are found in sewage.

"One concern about water that comes from water-reclamation plants," says the Wisconsin scientist, "is that drugs and hormones in this water aren’t removed during the treatment process."

As Pedersen explains, wastewater typically contains any number of pharmaceuticals and hormones that people have either excreted or flushed away for easy disposal. Many times, these chemical compounds remain biologically active, he says, adding that some of them, especially hormones such as estrogen, appear to significantly alter aquatic organisms.

To investigate how well reclamation plants remove potentially harmful drugs and hormones from wastewater, Pedersen and environmental scientists from the University of California Los Angeles tested the water coming out of three Californian treatment plants, two of which produced recycled water used to recharge groundwater. They looked for detectable levels of 19 contaminants, including ibuprofen, caffeine, testosterone, and drugs that lower cholesterol and inhibit seizures.

Pedersen says that the presence of these drugs and hormones in the reused wastewater would be of particular concern if the concentrations were high enough to elicit health and ecological effects. Much work still needs to be done to determine whether low levels found in wastewater are a cause for concern, he adds.

The team of scientists sampled water from all three plants both before and after the water underwent additional treatment processes. While wastewater that had undergone conventional treatment was filtered to remove larger particles, the reclamation plants used additional techniques to remove smaller particles - such as adding lime before filtration or passing water through a microfilter - and then reverse osmosis, a method by which water is forced through a semipermeable membrane that blocks the passage of other molecules.

The research shows that water-reclamation plants employing reverse osmosis do in fact remove more contaminants.

For example, the conventional treatment plant, which after initial treatment still contained detectable levels of 13 of the different contaminants under study, eliminated only five of them from the discharged water. The two reclamation plants, which had 16 and 14 different contaminants present after initial treatment, eliminated 16 and 12 of the chemical compounds, respectively.

"Conventional wastewater treatment processes don’t eliminate pharmaceuticals and hormones as effectively, resulting in the release of low levels of these compounds into the environment," says Pedersen. "The more advanced processes, on the other hand, do a pretty good job at removing compounds."

Yet, exactly what these differences in contaminant removal may mean for the environment - and even human health - remains uncertain, says Pedersen. "This is a case where the analytical chemistry is ahead of the toxicology," he says. "Right now, the ecological effects of chronic low-level exposure to many of these pharmaceuticals are unknown."

Joel Pedersen | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>