Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some treatment plants effectively remove drugs, hormones from wastewater

26.08.2004


Given the number of human pharmaceuticals and hormones that make their way into wastewater, some people are concerned about how well treatment plants that turn sewage into reusable water remove these chemicals.



New research shows that wastewater treatment plants that employ a combination of purifying techniques followed by reverse osmosis - a process by which water is forced through a barrier that only water can pass - do a good job of removing chemicals that may elicit health effects.

Details were presented today (Aug. 25), at the 228th American Chemical Society meeting in Philadelphia as part of a special symposium on pharmaceuticals and personal care products in the environment.


"As the demand for water continues to increase, especially in arid areas, there’s greater pressure placed on an already shrinking water supply," says Joel Pedersen, a University of Wisconsin-Madison environmental chemist, who co-authored a paper detailing this research. "More people are considering the reuse of water."

Wastewater reclamation plants - treatment plants that use additional processes to purify sewage - are already in operation. They produce water to irrigate crops, highway landscaping, golf courses and parks, as well as to be reintroduced into the ground for groundwater recharge, which ultimately could end up in drinking-water supplies.

While this treatment process has the promise to save an evaporating natural resource, Pedersen points out that little is known about just how well water-reclamation plants remove the pharmaceuticals and hormones that typically are found in sewage.

"One concern about water that comes from water-reclamation plants," says the Wisconsin scientist, "is that drugs and hormones in this water aren’t removed during the treatment process."

As Pedersen explains, wastewater typically contains any number of pharmaceuticals and hormones that people have either excreted or flushed away for easy disposal. Many times, these chemical compounds remain biologically active, he says, adding that some of them, especially hormones such as estrogen, appear to significantly alter aquatic organisms.

To investigate how well reclamation plants remove potentially harmful drugs and hormones from wastewater, Pedersen and environmental scientists from the University of California Los Angeles tested the water coming out of three Californian treatment plants, two of which produced recycled water used to recharge groundwater. They looked for detectable levels of 19 contaminants, including ibuprofen, caffeine, testosterone, and drugs that lower cholesterol and inhibit seizures.

Pedersen says that the presence of these drugs and hormones in the reused wastewater would be of particular concern if the concentrations were high enough to elicit health and ecological effects. Much work still needs to be done to determine whether low levels found in wastewater are a cause for concern, he adds.

The team of scientists sampled water from all three plants both before and after the water underwent additional treatment processes. While wastewater that had undergone conventional treatment was filtered to remove larger particles, the reclamation plants used additional techniques to remove smaller particles - such as adding lime before filtration or passing water through a microfilter - and then reverse osmosis, a method by which water is forced through a semipermeable membrane that blocks the passage of other molecules.

The research shows that water-reclamation plants employing reverse osmosis do in fact remove more contaminants.

For example, the conventional treatment plant, which after initial treatment still contained detectable levels of 13 of the different contaminants under study, eliminated only five of them from the discharged water. The two reclamation plants, which had 16 and 14 different contaminants present after initial treatment, eliminated 16 and 12 of the chemical compounds, respectively.

"Conventional wastewater treatment processes don’t eliminate pharmaceuticals and hormones as effectively, resulting in the release of low levels of these compounds into the environment," says Pedersen. "The more advanced processes, on the other hand, do a pretty good job at removing compounds."

Yet, exactly what these differences in contaminant removal may mean for the environment - and even human health - remains uncertain, says Pedersen. "This is a case where the analytical chemistry is ahead of the toxicology," he says. "Right now, the ecological effects of chronic low-level exposure to many of these pharmaceuticals are unknown."

Joel Pedersen | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>