Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidity helps prevent muscle fatigue

20.08.2004


Scientists at La Trobe University in Melbourne, Australia, and at the University of Aarhus in Denmark, have discovered the mechanism by which acidity helps prevent muscle fatigue.



The discovery runs in the face of the previously held belief among physiologists and athletes that acidity, through a build up of lactic acid, is a major cause of muscle fatigue.

Professors George Stephenson and Graham Lamb of La Trobe’s Muscle Research Laboratory and Mr Thomas Pedersen and Professor Ole Nielsen from the University of Aarhus, presented their findings to the scientific world in Science, the journal of the American Association for the Advancement of Science, published today (August 20).


Mr Pedersen, a Danish PhD student from the University of Aarhus, came to work for six months in the Muscle Research group to carry out the project with Professors Stephenson and Lamb using a technique developed in their laboratory by which the surface membrane of single muscle fibres--which are half the thickness of a human hair-- is peeled away, without interfering with the ability of the muscle fibre to contract normally to electrical stimulation. This enabled the researchers to change conditions inside the muscle cells and study the effects of acidity on the force response.

’We found that muscles play a "clever trick" in which they use acidosis--the build-up of acid--to help ensure that they keep responding properly to nerve signals and so avoid the fatigue that would otherwise occur,’ said Professor Lamb.

Collaboration between La Trobe and Aarhus universities started in 2002 when Professor Nielsen came as a Distinguished Visiting Scholar at La Trobe’s Institute of Advanced Study to work for a month in the Muscle Research Laboratory.

Professor Nielsen had recently demonstrated for the first time that acidity could be beneficial to muscle performance, although it was not clear how this occurred.

The La Trobe/Aarhus team identified the underlying mechanism of why acidity is beneficial, discovering that our muscles use a ’clever trick’.

Muscle contraction in a skeletal muscle fibre in response to a nerve impulse is the result of a complex series of events known as excitation-contraction-coupling. There is a network of tiny tubes in muscle fibre known as the T-system that allow electrical signals, set up on the muscle fibre’s surface in response to nerve signals, to move deep inside and excite the whole of the fibre.

’Chloride ions play an important role in muscle by dampening the excitability of the surface membrane and T-system, ensuring that they only respond when stimulated by nerve signals and do not become spontaneously excited,’ Professor Stephenson said. ’When a muscle is worked hard, potassium ions come out of the fibres and make the membrane less excitable. The acidity generated inside a working muscle helps counter this depressing effect by reducing the influence of chloride, which helps the muscle membranes stay excitable.’

’It is a very clever trick because rested muscles need the chloride effect normally to prevent them spontaneously contracting. The acidity produced by the strenuous exercise reduces chloride’s stabilising effect, enabling the impulses to keep exciting the muscle when they would otherwise fail.’

’We have concluded that intracellular acidosis increases the excitability of the T-system, thus counteracting fatigue at a critical step in excitation-contraction-coupling.

’This finding should be of great interest not only to elite athletes and the many laboratories around the world involved in muscle research, but also to all of us because previous orthodoxy was that acidity caused muscle fatigue.’

Professor George Stephenson | EurekAlert!
Further information:
http://www.latrobe.edu.au

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>