Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidity helps prevent muscle fatigue

20.08.2004


Scientists at La Trobe University in Melbourne, Australia, and at the University of Aarhus in Denmark, have discovered the mechanism by which acidity helps prevent muscle fatigue.



The discovery runs in the face of the previously held belief among physiologists and athletes that acidity, through a build up of lactic acid, is a major cause of muscle fatigue.

Professors George Stephenson and Graham Lamb of La Trobe’s Muscle Research Laboratory and Mr Thomas Pedersen and Professor Ole Nielsen from the University of Aarhus, presented their findings to the scientific world in Science, the journal of the American Association for the Advancement of Science, published today (August 20).


Mr Pedersen, a Danish PhD student from the University of Aarhus, came to work for six months in the Muscle Research group to carry out the project with Professors Stephenson and Lamb using a technique developed in their laboratory by which the surface membrane of single muscle fibres--which are half the thickness of a human hair-- is peeled away, without interfering with the ability of the muscle fibre to contract normally to electrical stimulation. This enabled the researchers to change conditions inside the muscle cells and study the effects of acidity on the force response.

’We found that muscles play a "clever trick" in which they use acidosis--the build-up of acid--to help ensure that they keep responding properly to nerve signals and so avoid the fatigue that would otherwise occur,’ said Professor Lamb.

Collaboration between La Trobe and Aarhus universities started in 2002 when Professor Nielsen came as a Distinguished Visiting Scholar at La Trobe’s Institute of Advanced Study to work for a month in the Muscle Research Laboratory.

Professor Nielsen had recently demonstrated for the first time that acidity could be beneficial to muscle performance, although it was not clear how this occurred.

The La Trobe/Aarhus team identified the underlying mechanism of why acidity is beneficial, discovering that our muscles use a ’clever trick’.

Muscle contraction in a skeletal muscle fibre in response to a nerve impulse is the result of a complex series of events known as excitation-contraction-coupling. There is a network of tiny tubes in muscle fibre known as the T-system that allow electrical signals, set up on the muscle fibre’s surface in response to nerve signals, to move deep inside and excite the whole of the fibre.

’Chloride ions play an important role in muscle by dampening the excitability of the surface membrane and T-system, ensuring that they only respond when stimulated by nerve signals and do not become spontaneously excited,’ Professor Stephenson said. ’When a muscle is worked hard, potassium ions come out of the fibres and make the membrane less excitable. The acidity generated inside a working muscle helps counter this depressing effect by reducing the influence of chloride, which helps the muscle membranes stay excitable.’

’It is a very clever trick because rested muscles need the chloride effect normally to prevent them spontaneously contracting. The acidity produced by the strenuous exercise reduces chloride’s stabilising effect, enabling the impulses to keep exciting the muscle when they would otherwise fail.’

’We have concluded that intracellular acidosis increases the excitability of the T-system, thus counteracting fatigue at a critical step in excitation-contraction-coupling.

’This finding should be of great interest not only to elite athletes and the many laboratories around the world involved in muscle research, but also to all of us because previous orthodoxy was that acidity caused muscle fatigue.’

Professor George Stephenson | EurekAlert!
Further information:
http://www.latrobe.edu.au

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>