Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein may be key to muscular dystrophy

19.08.2004


A defect in the action of a newly discovered protein may play a central role in muscular dystrophy, a disease of progressive muscle degeneration with no known cure.



Scientists at UCSF’s Ernest Gallo Clinic and Research Center discovered in an animal model of the disease that during periods of intense muscle activity, muscles remain excited too long and degenerate if the protein fails to transport the neurotransmitter acetylcholine away from the nerve-muscle synapse. Muscle degeneration is the hallmark of muscular dystrophy, one of the most common genetic diseases.

The study was carried out in the roundworm, C. elegans, an animal which has provided early clues to the role of a number of important molecules in the human nervous system. The researchers expect that the protein, which they showed is an acetylcholine transporter, plays the same role in humans as it does in C. elegans, identifying a potential new route for treatment of muscular dystrophy.


The research is being reported in the August 19 issue of the journal Nature.

Normally, a nerve cell induces a muscle cell to contract by releasing the neurotransmitter acetylcholine at the synapse -- the junction where the two cells meet. Researchers have identified transporters for most neurotransmitters, such as serotonin, dopamine and glutamate. The transporters remove neurotransmitters from the synapse, in effect providing an "off" switch to the neurotransmitter’s potent effects. It was thought that normal enzymatic breakdown of acetylcholine was so effective that a transporter wasn’t needed to clear excess acetylcholine from the synapse. But the scientists found that during periods of intense muscle activity, a transporter must clear acetylcholine from the synapse.

"Discovering a transporter for acetylcholine was quite a surprise," said Steven McIntire, MD, PhD, UCSF assistant professor of neurology. "Identification of an acetylcholine transporter in mammals could lead to useful therapeutics to treat neuromuscular diseases as well as disorders of the central nervous system." McIntire is a principal investigator at the UCSF-affiliated Gallo Clinic and Research Center, and is senior author on the Nature paper.

Transporters have proven to be important drug targets, McIntire said. Prozac, for example, modulates a transporter that regulates serotonin concentration. Besides carrying messages from nerve cells to muscle cells, acetylcholine triggers communication between neurons in the brain, and is involved directly or indirectly in many diseases, including Alzheimer’s and diseases of peripheral nerves. Discovery of the acetylcholine transporter could lead to therapies for some of these diseases based on altering acetylcholine levels, he said.

Duchenne muscular dystrophy, the most common form of the disease, primarily affects boys -- about one in 3,500 male births. It typically begins in early childhood. Children often experience leg weakness, falling and progressive loss of movement, eventually becoming wheel chair-dependent. Many die in their late teens or early twenties. Currently, there is no cure.

Scientists already knew that muscular dystrophy results from genetic defects in components of a network of proteins, known as the dystrophin-glycoprotein complex (DGC),that extends through the entire muscle cell membrane, linking the framework inside the cell to the region outside of the cell. The complex is found in C. elegans, in mice and in humans. In each species, defects in the complex can cause muscle degeneration, but the exact role of the complex in disease has not been clear.

In a genetic screen, the scientists identified 12 mutations which produced defects in coordinated movement just like those found in C. elegans DGC mutants -- a model for human muscular dystrophy. While seven of the mutants involved defective DGC function, five others resulted from variations in a previously unidentified gene. The team cloned this gene, snf-6, and found that its sequence was similar to genes in a family of mammalian neurotransmitter transporters. Because analysis of mutants indicated defects in acetylcholine activity, they tested whether the expressed protein, SNF-6, transports acetylcholine in mammalian cells grown in culture. They found that it is indeed an acetylcholine transporter.

The team used fluorescence techniques to determine that the distribution of SNF-6 was altered in DGC mutants. They found that the DGC, imbedded in the muscle cell membrane, maintains the neurotransmitter transporter at the neuromuscular synapse. In this location, the transporter is available to clear excess acetylcholine.

Further studies confirmed that when acetylcholine transporter function is disrupted, whether by defects in the DGC protein complex that maintains the transporter, or by genetic defects in the transporter itself, the result is muscle degeneration typical of muscular dystrophy.

"We hope that these findings will ultimately lead to an effective treatment for common forms of muscular dystrophy," McIntire said.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>