Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered protein may be key to muscular dystrophy


A defect in the action of a newly discovered protein may play a central role in muscular dystrophy, a disease of progressive muscle degeneration with no known cure.

Scientists at UCSF’s Ernest Gallo Clinic and Research Center discovered in an animal model of the disease that during periods of intense muscle activity, muscles remain excited too long and degenerate if the protein fails to transport the neurotransmitter acetylcholine away from the nerve-muscle synapse. Muscle degeneration is the hallmark of muscular dystrophy, one of the most common genetic diseases.

The study was carried out in the roundworm, C. elegans, an animal which has provided early clues to the role of a number of important molecules in the human nervous system. The researchers expect that the protein, which they showed is an acetylcholine transporter, plays the same role in humans as it does in C. elegans, identifying a potential new route for treatment of muscular dystrophy.

The research is being reported in the August 19 issue of the journal Nature.

Normally, a nerve cell induces a muscle cell to contract by releasing the neurotransmitter acetylcholine at the synapse -- the junction where the two cells meet. Researchers have identified transporters for most neurotransmitters, such as serotonin, dopamine and glutamate. The transporters remove neurotransmitters from the synapse, in effect providing an "off" switch to the neurotransmitter’s potent effects. It was thought that normal enzymatic breakdown of acetylcholine was so effective that a transporter wasn’t needed to clear excess acetylcholine from the synapse. But the scientists found that during periods of intense muscle activity, a transporter must clear acetylcholine from the synapse.

"Discovering a transporter for acetylcholine was quite a surprise," said Steven McIntire, MD, PhD, UCSF assistant professor of neurology. "Identification of an acetylcholine transporter in mammals could lead to useful therapeutics to treat neuromuscular diseases as well as disorders of the central nervous system." McIntire is a principal investigator at the UCSF-affiliated Gallo Clinic and Research Center, and is senior author on the Nature paper.

Transporters have proven to be important drug targets, McIntire said. Prozac, for example, modulates a transporter that regulates serotonin concentration. Besides carrying messages from nerve cells to muscle cells, acetylcholine triggers communication between neurons in the brain, and is involved directly or indirectly in many diseases, including Alzheimer’s and diseases of peripheral nerves. Discovery of the acetylcholine transporter could lead to therapies for some of these diseases based on altering acetylcholine levels, he said.

Duchenne muscular dystrophy, the most common form of the disease, primarily affects boys -- about one in 3,500 male births. It typically begins in early childhood. Children often experience leg weakness, falling and progressive loss of movement, eventually becoming wheel chair-dependent. Many die in their late teens or early twenties. Currently, there is no cure.

Scientists already knew that muscular dystrophy results from genetic defects in components of a network of proteins, known as the dystrophin-glycoprotein complex (DGC),that extends through the entire muscle cell membrane, linking the framework inside the cell to the region outside of the cell. The complex is found in C. elegans, in mice and in humans. In each species, defects in the complex can cause muscle degeneration, but the exact role of the complex in disease has not been clear.

In a genetic screen, the scientists identified 12 mutations which produced defects in coordinated movement just like those found in C. elegans DGC mutants -- a model for human muscular dystrophy. While seven of the mutants involved defective DGC function, five others resulted from variations in a previously unidentified gene. The team cloned this gene, snf-6, and found that its sequence was similar to genes in a family of mammalian neurotransmitter transporters. Because analysis of mutants indicated defects in acetylcholine activity, they tested whether the expressed protein, SNF-6, transports acetylcholine in mammalian cells grown in culture. They found that it is indeed an acetylcholine transporter.

The team used fluorescence techniques to determine that the distribution of SNF-6 was altered in DGC mutants. They found that the DGC, imbedded in the muscle cell membrane, maintains the neurotransmitter transporter at the neuromuscular synapse. In this location, the transporter is available to clear excess acetylcholine.

Further studies confirmed that when acetylcholine transporter function is disrupted, whether by defects in the DGC protein complex that maintains the transporter, or by genetic defects in the transporter itself, the result is muscle degeneration typical of muscular dystrophy.

"We hope that these findings will ultimately lead to an effective treatment for common forms of muscular dystrophy," McIntire said.

Wallace Ravven | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>