Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate new technique that improves the power of atomic force micrscopy

17.08.2004


An artist’s depiction shows an atomic force microscope probe (not to scale) ’fishing’ for molecular sites recognized by an antibody tethered to the probe by a fine polymer thread. The new technique promises to vastly improve the capabilities of atomic force microscopy.


A team of researchers have developed a method that could vastly improve the ability of atomic force microscopes to "see" the chemical composition of a sample, follow variations of the sample, as well as map its topographic structure.

The advance could have significant implications for drug development by allowing scientists to monitor the effects of potential drugs on an ever-smaller scale, according to Stuart Lindsay, director of the Center for Single Molecule Biophysics at the Biodesign Institute at Arizona State University and a lead researcher on the project.

Lindsay, an ASU professor in the department of physics and astronomy said the new technique allows an atomic force microscope to "see," on a nanometer scale, the chemical composition of molecules.



"Atomic force microscopy has a resolution down to an atomic level, but until now it has been blind to identifying specific chemical compositions," Lindsay said.

The researchers -- Lindsay, Hongda Wang, Ralph Bash, Brian Ashcroft, and Dennis Lohr of Arizona State University; Cordula Stroh, Hermann Gruber and Peter Hinterdorfer of the Institute of Biophysics at the University of Lintz, Austria; and Jeremy Nelson of Molecular Imaging Corporation, Tempe, Ariz. -- present their findings in "Single Molecule Recognition Imaging Microscopy" in the current issue of the Proceedings of the National Academy of Sciences. The article is available on line at http://www4.nationalacademies.org/nas/nashome.nsf

"If you imagine that all proteins are shaped like Lego blocks, then conventional atomic force microscopy (AFM) is feeling the Lego blocks on the floor, but it can’t tell the difference between one block and another," Lindsay explained. "What we have done, is allow the person sitting on the floor and feeling those blocks to open their eyes and see that there are red Lego blocks, green Lego blocks and yellow Lego blocks."

"This allows you to identify specific components in an image," he added. "It means you can now follow a complex process and see what’s happening, at the molecular level, to one of the components. We are now giving AFM chemical sensitivity in much the way colored dyes gave optical microscopes optical sensitivity for much larger objects (~1 micron)."

Atomic force microscopes provide images on the nanometer scale by using a highly sensitive and tiny probe that is essentially pulled across a surface. By doing this, researchers can obtain topographical images down to a nanometer scale.

To use the AFM in its new mode, the researchers attached antibodies keyed to individual proteins to the tip of an AFM’s probe. When an antibody reacts with the protein it is specifically targeted for, it creates a variance in the microscope’s reading compared to a reading with a bare tip, thus showing the presence of a protein or other specific material in the region being scanned.

To help ensure that the antibody tipped probe is truly sensitive, a strand of polymer connects the antibody to the tip, providing a tether that allows the antibody to wiggle into position to better connect with the protein receptors. A magnetically excited cantilever makes the tip oscillate up and down to make the antibody disconnect and reconnect and keep the probe moving.

A key capability of this technique, Lindsay said, is that it allows researchers to see how components of a cell react on a molecular scale when they experience biological processes, such as their response to a specific chemical or compound. In this mode, it could provide researchers with a molecular "time-lapsed movie" of such reactions, which could lead to greater understanding of the chemical dynamics involved in how cells react to such stimuli.

Lindsay said the new AFM method could be significant for drug discovery.

"This development opens up the AFM as a research tool," Lindsay added. "The ability to identify the specific proteins on a membrane surface means you can take something very complex, like the surface of a human cell with all of the types of different receptors on it and ask questions about the local chemistry, like what is binding at those sites. That will provide the fundamental knowledge you need to develop new drugs."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>