Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Miracle’ moss to give up its secrets

17.08.2004


University of Leeds genetics researchers are part of an international project to determine the genome sequence of the fast-growing moss, Physcomitrella patens. Understanding how this British weed works will help scientists get to the root of how other species live and grow and, potentially, improve their resilience.



The quick-growing moss has been used in plant research for over 30 years as it’s easy to cultivate in laboratories. Genetic information from the project will help investigators explain why some varieties of moss can survive extreme conditions:

Lead UK academic Professor Cove explained why the moss is so special: “Mosses were among the first plants to colonise the land, 450 million years ago. They can do many of the things that the flowering plants have forgotten. Some of their ’primitive’ traits – like the ability to survive extremes of dehydration – would be useful in modern crops. You can take a Victorian sample of some mosses and bring them ’back’ to life years on by just adding water. By studying the genes controlling these traits in the moss, we should be able to identify how these characteristics could be re-awoken in flowering plants.”


Moss expert Professor David Cove and his team will work with Professor Ralph Quatrano from St. Louis and Professor Brent Mishler from the University of California. The sequencing will be carried out by the US Department of Energy. The project builds on 30 years of research in Leeds, Japan, Germany, Switzerland and the USA.

The reasons for mapping the moss’s genome can be found in another international research project. Professor Cove said: “The human genome project is helping us understand genetic causes of disease - and to develop new therapies. It’s clear that much of our knowledge came by comparing the genomes of humans with those of much simpler animals, like flies and worms. Soon, we’ll be able to do the same thing by comparing the genomes of simple and complex plants.”

The genome of the moss is larger than that of the first plant genome sequenced, ’Wonder Weed’, Arabidopsis thaliana – a simple flowering plant used by plant scientists worldwide as a model for the study of plant development.

Hannah Love | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>