Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Miracle’ moss to give up its secrets

17.08.2004


University of Leeds genetics researchers are part of an international project to determine the genome sequence of the fast-growing moss, Physcomitrella patens. Understanding how this British weed works will help scientists get to the root of how other species live and grow and, potentially, improve their resilience.



The quick-growing moss has been used in plant research for over 30 years as it’s easy to cultivate in laboratories. Genetic information from the project will help investigators explain why some varieties of moss can survive extreme conditions:

Lead UK academic Professor Cove explained why the moss is so special: “Mosses were among the first plants to colonise the land, 450 million years ago. They can do many of the things that the flowering plants have forgotten. Some of their ’primitive’ traits – like the ability to survive extremes of dehydration – would be useful in modern crops. You can take a Victorian sample of some mosses and bring them ’back’ to life years on by just adding water. By studying the genes controlling these traits in the moss, we should be able to identify how these characteristics could be re-awoken in flowering plants.”


Moss expert Professor David Cove and his team will work with Professor Ralph Quatrano from St. Louis and Professor Brent Mishler from the University of California. The sequencing will be carried out by the US Department of Energy. The project builds on 30 years of research in Leeds, Japan, Germany, Switzerland and the USA.

The reasons for mapping the moss’s genome can be found in another international research project. Professor Cove said: “The human genome project is helping us understand genetic causes of disease - and to develop new therapies. It’s clear that much of our knowledge came by comparing the genomes of humans with those of much simpler animals, like flies and worms. Soon, we’ll be able to do the same thing by comparing the genomes of simple and complex plants.”

The genome of the moss is larger than that of the first plant genome sequenced, ’Wonder Weed’, Arabidopsis thaliana – a simple flowering plant used by plant scientists worldwide as a model for the study of plant development.

Hannah Love | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>