Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Miracle’ moss to give up its secrets

17.08.2004


University of Leeds genetics researchers are part of an international project to determine the genome sequence of the fast-growing moss, Physcomitrella patens. Understanding how this British weed works will help scientists get to the root of how other species live and grow and, potentially, improve their resilience.



The quick-growing moss has been used in plant research for over 30 years as it’s easy to cultivate in laboratories. Genetic information from the project will help investigators explain why some varieties of moss can survive extreme conditions:

Lead UK academic Professor Cove explained why the moss is so special: “Mosses were among the first plants to colonise the land, 450 million years ago. They can do many of the things that the flowering plants have forgotten. Some of their ’primitive’ traits – like the ability to survive extremes of dehydration – would be useful in modern crops. You can take a Victorian sample of some mosses and bring them ’back’ to life years on by just adding water. By studying the genes controlling these traits in the moss, we should be able to identify how these characteristics could be re-awoken in flowering plants.”


Moss expert Professor David Cove and his team will work with Professor Ralph Quatrano from St. Louis and Professor Brent Mishler from the University of California. The sequencing will be carried out by the US Department of Energy. The project builds on 30 years of research in Leeds, Japan, Germany, Switzerland and the USA.

The reasons for mapping the moss’s genome can be found in another international research project. Professor Cove said: “The human genome project is helping us understand genetic causes of disease - and to develop new therapies. It’s clear that much of our knowledge came by comparing the genomes of humans with those of much simpler animals, like flies and worms. Soon, we’ll be able to do the same thing by comparing the genomes of simple and complex plants.”

The genome of the moss is larger than that of the first plant genome sequenced, ’Wonder Weed’, Arabidopsis thaliana – a simple flowering plant used by plant scientists worldwide as a model for the study of plant development.

Hannah Love | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>