Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene duplication allowed pigs to have more babies

17.08.2004


With increasing numbers of whole genomes being sequenced, researchers are keen to analyse the functions of the genes they contain and the proteins these genes encode. Yet, according to researchers writing in BMC Biology, to fully understand any genome, researchers must use palaeontology, geology and chemistry to help them discover the reasons why specific genes evolved.



Steven Benner and Eric Gaucher at the Foundation for Applied Molecular Evolution, Frank and Rosalie Simmen at the University of Arkansas, and their colleagues from the United States and Norway used a diverse array of disciplines to investigate why the pig, Sus scrofa, has three different genes that encode the enzyme aromatase – an enzyme that catalyses the transformation of androgens, such as testosterone, into estrogens - whereas other hooved animals have only one.

The evidence that they collected suggests that the additional aromatase genes arose as a result of natural selection for pigs with larger litters than their ancestors. These larger litters may well have helped the animals to survive the dramatic cooling of the earth that started during the Oligocene period, around 35 million years ago.


Their investigations drew on the geological and palaeontological records, and used techniques from evolutionary biology, structural biology, chemistry and genetics. “As the geological, palaeontological and genomic records improve,” write the authors, “our combined approach should become widely useful to make systems biology statements about high-level function for biomolecular systems. […] Over the long term, we expect that the histories of the geosphere, the biosphere and the genosphere will converge to give a coherent picture showing the relationship between life and the planet that supports it.”

The researchers used genetic information to estimate that the ancestral aromatase gene duplicated twice, to give three genes, between 27 and 38 million years ago. By analysing the genetic sequence from two living relatives of Sus scrofa, peccary and babirusa, the researchers were able to narrow this time period further. As both these relatives have two genes encoding aromatases, one more than most hooved animals, the first gene duplication is likely to have occurred in the common ancestor of the three animals, around 35 million years ago. This coincides with the climate changes that started in the Oligocene.

By consulting the palaeontological record, which contains fossils of pregnant animals, the researchers found that the increase in the number of aromatase genes coincided with the emergence of larger litter sizes. Ancestral hooved animals produced between one and two offspring at a time, whereas peccaries produce at least two offspring, and the true pigs, such as Sus scrofa, routinely have between three and four young. This evidence suggested that the new aromatase genes could have played a role in altering the reproductive behaviour of the animals.

By studying the structure of the different enzymes encoded by the three genes, Dr Benner and his colleagues found small differences in the amino acid sequences within the protein’s substrate-binding and active sites. This suggests that the three enzymes bind to different molecules, so each aids the formation of different products. It is the evolution of these different catalytic activities that might have caused changes in the pig’s reproductive biology.

Obviously, the evolution of the aromatase genes is likely to be only a small part of the changes in reproductive endocrinology that enabled these animals to make the transition from small to large litter sizes. However, the multi-disciplinary analysis does go some way towards explaining why natural selection would have favoured pigs with multiple aromatase genes.

Dr Benner writes: “Natural history offers biological chemists the opportunity to place broad biological meaning on the detailed analysis of the changing structure of isolated biological molecules, studied in a reductionist setting. To do so, however, natural history must be connected to the physical and molecular sciences, both in subject matter and in culture.”

Gemma Bradley | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>