Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene duplication allowed pigs to have more babies

17.08.2004


With increasing numbers of whole genomes being sequenced, researchers are keen to analyse the functions of the genes they contain and the proteins these genes encode. Yet, according to researchers writing in BMC Biology, to fully understand any genome, researchers must use palaeontology, geology and chemistry to help them discover the reasons why specific genes evolved.



Steven Benner and Eric Gaucher at the Foundation for Applied Molecular Evolution, Frank and Rosalie Simmen at the University of Arkansas, and their colleagues from the United States and Norway used a diverse array of disciplines to investigate why the pig, Sus scrofa, has three different genes that encode the enzyme aromatase – an enzyme that catalyses the transformation of androgens, such as testosterone, into estrogens - whereas other hooved animals have only one.

The evidence that they collected suggests that the additional aromatase genes arose as a result of natural selection for pigs with larger litters than their ancestors. These larger litters may well have helped the animals to survive the dramatic cooling of the earth that started during the Oligocene period, around 35 million years ago.


Their investigations drew on the geological and palaeontological records, and used techniques from evolutionary biology, structural biology, chemistry and genetics. “As the geological, palaeontological and genomic records improve,” write the authors, “our combined approach should become widely useful to make systems biology statements about high-level function for biomolecular systems. […] Over the long term, we expect that the histories of the geosphere, the biosphere and the genosphere will converge to give a coherent picture showing the relationship between life and the planet that supports it.”

The researchers used genetic information to estimate that the ancestral aromatase gene duplicated twice, to give three genes, between 27 and 38 million years ago. By analysing the genetic sequence from two living relatives of Sus scrofa, peccary and babirusa, the researchers were able to narrow this time period further. As both these relatives have two genes encoding aromatases, one more than most hooved animals, the first gene duplication is likely to have occurred in the common ancestor of the three animals, around 35 million years ago. This coincides with the climate changes that started in the Oligocene.

By consulting the palaeontological record, which contains fossils of pregnant animals, the researchers found that the increase in the number of aromatase genes coincided with the emergence of larger litter sizes. Ancestral hooved animals produced between one and two offspring at a time, whereas peccaries produce at least two offspring, and the true pigs, such as Sus scrofa, routinely have between three and four young. This evidence suggested that the new aromatase genes could have played a role in altering the reproductive behaviour of the animals.

By studying the structure of the different enzymes encoded by the three genes, Dr Benner and his colleagues found small differences in the amino acid sequences within the protein’s substrate-binding and active sites. This suggests that the three enzymes bind to different molecules, so each aids the formation of different products. It is the evolution of these different catalytic activities that might have caused changes in the pig’s reproductive biology.

Obviously, the evolution of the aromatase genes is likely to be only a small part of the changes in reproductive endocrinology that enabled these animals to make the transition from small to large litter sizes. However, the multi-disciplinary analysis does go some way towards explaining why natural selection would have favoured pigs with multiple aromatase genes.

Dr Benner writes: “Natural history offers biological chemists the opportunity to place broad biological meaning on the detailed analysis of the changing structure of isolated biological molecules, studied in a reductionist setting. To do so, however, natural history must be connected to the physical and molecular sciences, both in subject matter and in culture.”

Gemma Bradley | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>