Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Breakthrough In Hepatitis C Virus Infection

06.08.2004


Researchers have made a significant advance in the understanding of the hepatitis C virus (HCV) by identifying new genetic factors associated with clearing the virus spontaneously without the necessity for additional treatment. Their findings are set out in a paper published in Science magazine today (6 August 2004).



Hepatitis C virus infects the liver and leads to serious permanent liver damage. The infection affects about 170 million people worldwide and up to 500,000 people in the UK. Most people who come into contact with HCV contract a long-term or chronic infection and, as a consequence, run a significant risk of liver failure - necessitating liver transplantation - or liver cancer.

The new multi-centre study was jointly led by researchers from the University of Southampton’s School of Medicine, the National Genetics Institute, USA, and the Johns Hopkins Hospital, USA. The findings demonstrate that natural killer (NK) cells provide a central defence against HCV infection and that this defence is mediated by specific inhibitory receptors expressed on NK cells and the partners or ligands for these receptors on liver cells.


Over 1,000 patients from the UK and the USA were involved in the study, some of whom were chronically infected and some who had cleared the virus. Researchers identified a specific combination of genes in these individuals that directly confers protection against HCV. The genes are killer cell immunoglobulin-like receptors (KIR) and HLA class I genes and the favourable genes identified in the study are KIR2DL3 and group 1 HLA-C alleles.

Dr Salim Khakoo of Southampton’s Infection, Inflammation and Repair Division, who co-authored the paper with Professor Mary Carrington of the National Genetics Institute in the USA, commented: ’These favourable genes control the functions of NK cells. NK cells are part of the innate immune system, a branch of immunity that has not been well-studied in HCV to date.

’KIR2DL3 on NK cells binds group 1 HLA-C alleles on liver cells and our work suggests that this interaction is more easily disturbed in HCV infection than other KIR-HLA interactions. Simply put, as an analogy to a car, it is like taking your foot off the brake of the natural killer cell rather than pressing the accelerator in order to get it going. This may then kick-start the rest of the immune response to HCV.’

By studying how people acquired HCV infection, the findings also suggest that the amount of virus they received is an important factor. Data suggests that the mechanism that researchers have discovered is more important in people receiving lower infectious amounts of HCV. The protective effect of genes on the virus was observed in Caucasians and African Americans with expected low infectious doses of HCV, but not in those with high-dose exposure, in whom the innate immune response is probably overwhelmed.

Dr Khakoo continued: ’We believe that this study is a significant advance in the understanding of hepatitis C virus infection. There are other interesting outcomes from our research. It implicates NK cells, and the innate immune system in general, in clearing HCV infection and this has not previously been clearly documented. It also suggests that the more NK cells of the protective type that an individual has the more likely they are to clear HCV.’

The researchers believe that the findings could eventually lead to new treatment strategies for HCV based around NK cells in general and KIR2DL3/HLA-C in particular.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk
http://www.sciencemag.org

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>