Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant gene discovery could enhance plant growth, reduce fertilizer needs and phosphate pollution

28.07.2004


Scientists at the Boyce Thompson Institute for Plant Research at Cornell University have uncovered the genes that enable plants to interact with beneficial soil dwelling fungi and to access phosphate delivered to the roots by these fungi -- a first step, they say, toward enhancing the beneficial relationship for crop plants , while reducing fertilizer use and phosphate pollution in the environment.



Discovery of the phosphate-transport genes was announced today (July 28, 2004) by Maria Harrison, a senior scientist at the Ithaca, N.Y.-based research institute, during the American Society of Plant Biologists’ annual meeting in Lake Buena Vista, Fla.

She said considerable work lies ahead before scientists learn to exploit the genetic discovery and harness the potential of this naturally occurring, symbiotic fungus-plant association, but that the payoff to growers and to the environment could be substantial: more efficient plant growth with less phosphorus-based fertilizer, and a subsequent reduction of phosphate runoff in surface water.


"AM fungi are very efficient at helping plants absorb phosphorus from the soil, and managing this symbiotic association is an essential part of sustainable agriculture" Harrison explained in an interview before plant biologists’ meeting. "Phosphorus is a nutrient wherever it goes, and in our lakes and rivers it often nourishes undesirable algae. Agriculture is a major source of phosphate pollution, so anything we biologists can do to improve phosphate uptake in crop plants will make agriculture more sustainable and less harmful to the environment," she predicted. A thorough understanding of how symbiotic fungi work with plants to assist the uptake of phosphorous and other nutrients from the soil is an important goal in plant biology with relevance to agriculture and ecology. Dr. Maria Harrison?s identification of the phosphorous uptake protein in the plasma membrane of the plant is an important step toward this goal. Now her research group is focused on learning which genes in the plant play a role in establishing the symbiotic relationship and of those that regulate the transfer of phosphorous into the plant.

In addition to advancing our understanding of nutrient uptake by plants, this work reveals the molecules behind the scenes of a fascinating example of two species interacting to the benefit of both. Dr. Maria Harrison of the Boyce Thompson Institute for Plant Research will present her work 2 p.m. Wednesday, July 28 at the ASPB Annual Meeting. The meeting will be held at Disney’s Coronado Springs Resort & Convention Center in Lake Buena Vista near Orlando. Dr. Harrison’s research was funded by the National Science Foundation Plant Genome Program and The Samuel Roberts Noble Foundation.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>