Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers review evolutionary history of modern algae

28.07.2004


Trees and grass are usually the only "heroes" that come to mind for consuming carbon dioxide and producing oxygen for planet Earth, but they have allies in the water: phytoplankton, or in another word, algae.



Phytoplankton are mostly single-celled photosynthetic organisms that feed fish and marine mammals. They are responsible for nearly 50 percent of the earth’s annual carbon-dioxide consumption and more than 45 percent of the oxygen production. Despite the important roles of modern phytoplankton, their evolutionary origins and rise to prominence in today’s oceans was an unresolved question in marine science.

In the first study that looks at phytoplankton from combined perspectives of biology, chemistry and geology, researchers from three countries, including Texas A&M University at Galveston Assistant Professor Antonietta Quigg, who specializes in algae ecology and chemistry, examined modern phytoplankton development and reviewed their evolutionary history. Findings of the project appear in the July 16 issue of Science magazine.


Funding for the study is supported by a grant through the National Science Foundation Biocomplexity program, which aims to make new advances by bringing people together from different fields.

Despite the early origins of cyanobacteria, an essential component of modern phytoplankton, the ancestors of the majority of phytoplankton that dominate the modern seas did not appear until 250 million years ago, the researchers note. This is fairly recent in geological terms. Cyanobateria appeared 3.8 billion years ago. A cyanobacterium is a single-celled photosynthetic organism, which with the help of sunlight could make carbon dioxide and water into oxygen and energy providing chemicals.

The researchers showed that modern phytoplankton began to form at a time when the low oxygen conditions characterized much of the world’s oceans. Since a cyanobacterium was capable of producing oxygen and nutrients, another bacterium, or a one-celled organism, ate the cyanobacterium, kept a part of the cyanobacterium undigested, and let it function as an oxygen and energy generating organelle. This added the photosynthesis function to the eater, and transformed it into the phytoplankton that would later dominate the sea.

The researchers found that changes in sea level, water chemistry and the amount of carbon-dioxide in the water, and even the evolution of grass-eating animals on land all contributed to the rise of the three dominant phytoplankton groups. For example, rising sea levels provided more ecospace for the phytoplankton, promoting increased diversity among the phytoplankton.

Quigg, coauthor of the Science magazine article said the study could help scientists understand the effects of increased carbon dioxide, or the green house gases on life in the ocean at present and in the future.

"One way to do that is to understand what was happening in the past," Quigg says. "If we have a theory or an idea, we could look in the past and check if that idea works." She says since some algae do very well with increase carbon dioxide and some do poorly, the evolutionary history will tell, with increased carbon-dioxide, what changes there may be in the types of algae in the water and how that will affect the fish and marine mammals that eat the algae.

"If you have an ocean full of algae that use a lot of carbon-dioxide, then we may be able to resolve the problem of green house effect," Quigg says. "But if you have an ocean full of algae that do not like to use carbon-dioxide, then you are in big trouble. Carbon-dioxide will keep increasing."

Jing Zhang | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>