Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers review evolutionary history of modern algae

28.07.2004


Trees and grass are usually the only "heroes" that come to mind for consuming carbon dioxide and producing oxygen for planet Earth, but they have allies in the water: phytoplankton, or in another word, algae.



Phytoplankton are mostly single-celled photosynthetic organisms that feed fish and marine mammals. They are responsible for nearly 50 percent of the earth’s annual carbon-dioxide consumption and more than 45 percent of the oxygen production. Despite the important roles of modern phytoplankton, their evolutionary origins and rise to prominence in today’s oceans was an unresolved question in marine science.

In the first study that looks at phytoplankton from combined perspectives of biology, chemistry and geology, researchers from three countries, including Texas A&M University at Galveston Assistant Professor Antonietta Quigg, who specializes in algae ecology and chemistry, examined modern phytoplankton development and reviewed their evolutionary history. Findings of the project appear in the July 16 issue of Science magazine.


Funding for the study is supported by a grant through the National Science Foundation Biocomplexity program, which aims to make new advances by bringing people together from different fields.

Despite the early origins of cyanobacteria, an essential component of modern phytoplankton, the ancestors of the majority of phytoplankton that dominate the modern seas did not appear until 250 million years ago, the researchers note. This is fairly recent in geological terms. Cyanobateria appeared 3.8 billion years ago. A cyanobacterium is a single-celled photosynthetic organism, which with the help of sunlight could make carbon dioxide and water into oxygen and energy providing chemicals.

The researchers showed that modern phytoplankton began to form at a time when the low oxygen conditions characterized much of the world’s oceans. Since a cyanobacterium was capable of producing oxygen and nutrients, another bacterium, or a one-celled organism, ate the cyanobacterium, kept a part of the cyanobacterium undigested, and let it function as an oxygen and energy generating organelle. This added the photosynthesis function to the eater, and transformed it into the phytoplankton that would later dominate the sea.

The researchers found that changes in sea level, water chemistry and the amount of carbon-dioxide in the water, and even the evolution of grass-eating animals on land all contributed to the rise of the three dominant phytoplankton groups. For example, rising sea levels provided more ecospace for the phytoplankton, promoting increased diversity among the phytoplankton.

Quigg, coauthor of the Science magazine article said the study could help scientists understand the effects of increased carbon dioxide, or the green house gases on life in the ocean at present and in the future.

"One way to do that is to understand what was happening in the past," Quigg says. "If we have a theory or an idea, we could look in the past and check if that idea works." She says since some algae do very well with increase carbon dioxide and some do poorly, the evolutionary history will tell, with increased carbon-dioxide, what changes there may be in the types of algae in the water and how that will affect the fish and marine mammals that eat the algae.

"If you have an ocean full of algae that use a lot of carbon-dioxide, then we may be able to resolve the problem of green house effect," Quigg says. "But if you have an ocean full of algae that do not like to use carbon-dioxide, then you are in big trouble. Carbon-dioxide will keep increasing."

Jing Zhang | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>