Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Springtime blooms seen earlier now than in the past

27.07.2004


Taking something of a back-to-the-future approach, biologists from Boston University have looked into the past to find that flowering plants growing today blossom more than a week earlier than a century ago. Their findings, being presented at the Society for Conservation Biology’s annual meeting in New York City July 30 – August 2, show that among the plants studied in Boston’s Arnold Arboretum, flowering times have moved forward over the decades, with the plants flowering eight days earlier on average from 1980 to 2002 than they did from 1900 to 1920.



What has influenced this rush to flower? Primarily temperature, says Richard Primack, a BU biology professor and head of the research team. Since 1885, Boston’s mean annual temperature has increased 1.5 degrees Celsius or nearly 3 degrees Fahrenheit. According to Primack’s team, this increase in mean temperature, especially in the months February through May, has influenced the shift in flowering times.

In addition to its scientific insights, the study may provide a model for public participation in climate change research. The relatively low-tech, data-from-the-community protocol used by the team might open such studies to participation by botanical gardens, zoos, museums, or even individuals who, over the years, have carefully collected and tended records on how biological organisms respond to their environment.


"It’s an untapped resource that could have widespread applications," says Abraham Miller-Rushing, a graduate student on the BU research team. "There’s always a pressure to find out what’s happened in the past so as to better understand what’s happening today. This is a new and different way to find out what’s happened."

Assisted by BU undergraduates Carolyn Imbres and Daniel Primack and by Peter Del Tredici, a senior research scientist at the Arboretum, the researchers combed herbarium records dating back to 1885 to determine when plants had flowered in the past. They focused on records for 229 plants, all of which are still alive and blooming in the Arboretum.

By comparing current flowering dates of the woody plants selected with their past flowering dates recorded in the Arboretum’s herbarium, the researchers found a significant trend toward earlier flowering. On average, they found the plants flowered eight days earlier during the period 1980 to 2002 than they did 100 years ago.

The data also showed the plants’ flowering times were quite sensitive to relatively small shifts in temperature, advancing 3.9 days per 1 C of temperature change. The team’s analyses showed the plants were most responsive to temperature changes in the months before and during flowering -- February through May. In general, throughout the past century, the warming temperatures were found to have caused the Arboretum’s plants to flower about five days earlier.

Changes to Boston’s temperature, however, did not explain completely the trend toward earlier flowering over time. According to the team, the results suggest that more localized effects, such as the size and age of the plants and conditions in and around the Arboretum, including warming caused by roads and buildings, probably contributed another three days to the observed earlier flowering times over the years.

The researchers conclude that it is viable to use existing collections from herbaria, museums, or other such institutions around the world to measure regional effects of climate change on phenological events. Analyses of such data could allow scientists to clarify the extent and character of the variation in natural responses local species have to climate change. Such analyses also could help improve predictions of the effects that future climate change might have on biological communities.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>