Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene associated with type 1 diabetes

23.07.2004


A new gene mutation identified by researchers at Baylor College of Medicine (BCM) in Houston is part of the constellation of genes associated with susceptibility to developing type 1 diabetes. It could also play a role in the devastating complications of diabetes such as kidney failure.



The gene called SUMO-4 contributes a portion of the risk of getting this form of diabetes, which typically strikes youngsters, said Drs. David Owerbach, Kurt Bohren and Kenneth Gabbay. Owerbach and Bohren are associate and assistant professors in the section of molecular diabetes and metabolism in the department of pediatrics at BCM, respectively. Gabbay is professor of pediatrics and head of the section.

SUMO-4 plays a role in regulating the immune system. When mutated, the gene functions abnormally, prolonging the inflammatory response.


This finding gives scientists a clue about the autoimmune cause of diabetes. In type 1 diabetes, the body’s protective system is turned against its own insulin-producing alpha cells in the pancreas. As a result, people who have type 1 diabetes do not produce insulin. Without insulin, their bodies cannot regulate the levels of sugar in their blood.

The mutated SUMO-4 gene may influence the inflammatory process itself and increase the susceptibility to the complications of diabetes.

The reports of the work by Owerbach, Bohren and Gabbay and the rest of their team in the Harry B. and Aileen B. Gordon Diabetes Research Center at Texas Children’s Hospital and BCM appeared in the June 25, 2004 issue of the Journal of Biological Chemistry and the July 2004 issue of the journal Diabetes.

No single gene causes type 1 diabetes. However, the BCM researchers and others in the field have identified a host of genes that contribute to the risk of developing the disease. Among the most potent genes are those in the HLA or human leukocyte antigen region, which regulate the immune system and help immune cells differentiate self from non-self.

Gene variants of DR and DQ in the HLA region are particularly important and are found in 95 percent of type 1 diabetics. Together, the genes in the HLA region account for as much as 40 percent of the familial risk of developing type1 diabetes. A second set of Type 1 diabetes susceptibility genes have also been identified in the region immediately preceding the insulin gene. This region contains a VNTR or variable number of tandem repeats, which refers to repeats of specific chemical bases that make up DNA. Inheritance of certain VNTR’s increases the risk of developing type 1 diabetes.

SUMO-4 contributes to the overall risk. However, the significance of the SUMO-4 gene lies in its role in controlling the immune and inflammatory response. The diabetes-associated variant gene appears to increase the stress response and cell death. SUMO-4 may provide a therapeutic target to modify or curtail the inflammatory process leading to the destruction of the alpha cells.

Kimberlee Barbour | EurekAlert!
Further information:
http://www.research.bcm.tmc.edu

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>