Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene associated with type 1 diabetes

23.07.2004


A new gene mutation identified by researchers at Baylor College of Medicine (BCM) in Houston is part of the constellation of genes associated with susceptibility to developing type 1 diabetes. It could also play a role in the devastating complications of diabetes such as kidney failure.



The gene called SUMO-4 contributes a portion of the risk of getting this form of diabetes, which typically strikes youngsters, said Drs. David Owerbach, Kurt Bohren and Kenneth Gabbay. Owerbach and Bohren are associate and assistant professors in the section of molecular diabetes and metabolism in the department of pediatrics at BCM, respectively. Gabbay is professor of pediatrics and head of the section.

SUMO-4 plays a role in regulating the immune system. When mutated, the gene functions abnormally, prolonging the inflammatory response.


This finding gives scientists a clue about the autoimmune cause of diabetes. In type 1 diabetes, the body’s protective system is turned against its own insulin-producing alpha cells in the pancreas. As a result, people who have type 1 diabetes do not produce insulin. Without insulin, their bodies cannot regulate the levels of sugar in their blood.

The mutated SUMO-4 gene may influence the inflammatory process itself and increase the susceptibility to the complications of diabetes.

The reports of the work by Owerbach, Bohren and Gabbay and the rest of their team in the Harry B. and Aileen B. Gordon Diabetes Research Center at Texas Children’s Hospital and BCM appeared in the June 25, 2004 issue of the Journal of Biological Chemistry and the July 2004 issue of the journal Diabetes.

No single gene causes type 1 diabetes. However, the BCM researchers and others in the field have identified a host of genes that contribute to the risk of developing the disease. Among the most potent genes are those in the HLA or human leukocyte antigen region, which regulate the immune system and help immune cells differentiate self from non-self.

Gene variants of DR and DQ in the HLA region are particularly important and are found in 95 percent of type 1 diabetics. Together, the genes in the HLA region account for as much as 40 percent of the familial risk of developing type1 diabetes. A second set of Type 1 diabetes susceptibility genes have also been identified in the region immediately preceding the insulin gene. This region contains a VNTR or variable number of tandem repeats, which refers to repeats of specific chemical bases that make up DNA. Inheritance of certain VNTR’s increases the risk of developing type 1 diabetes.

SUMO-4 contributes to the overall risk. However, the significance of the SUMO-4 gene lies in its role in controlling the immune and inflammatory response. The diabetes-associated variant gene appears to increase the stress response and cell death. SUMO-4 may provide a therapeutic target to modify or curtail the inflammatory process leading to the destruction of the alpha cells.

Kimberlee Barbour | EurekAlert!
Further information:
http://www.research.bcm.tmc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>