Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene associated with type 1 diabetes

23.07.2004


A new gene mutation identified by researchers at Baylor College of Medicine (BCM) in Houston is part of the constellation of genes associated with susceptibility to developing type 1 diabetes. It could also play a role in the devastating complications of diabetes such as kidney failure.



The gene called SUMO-4 contributes a portion of the risk of getting this form of diabetes, which typically strikes youngsters, said Drs. David Owerbach, Kurt Bohren and Kenneth Gabbay. Owerbach and Bohren are associate and assistant professors in the section of molecular diabetes and metabolism in the department of pediatrics at BCM, respectively. Gabbay is professor of pediatrics and head of the section.

SUMO-4 plays a role in regulating the immune system. When mutated, the gene functions abnormally, prolonging the inflammatory response.


This finding gives scientists a clue about the autoimmune cause of diabetes. In type 1 diabetes, the body’s protective system is turned against its own insulin-producing alpha cells in the pancreas. As a result, people who have type 1 diabetes do not produce insulin. Without insulin, their bodies cannot regulate the levels of sugar in their blood.

The mutated SUMO-4 gene may influence the inflammatory process itself and increase the susceptibility to the complications of diabetes.

The reports of the work by Owerbach, Bohren and Gabbay and the rest of their team in the Harry B. and Aileen B. Gordon Diabetes Research Center at Texas Children’s Hospital and BCM appeared in the June 25, 2004 issue of the Journal of Biological Chemistry and the July 2004 issue of the journal Diabetes.

No single gene causes type 1 diabetes. However, the BCM researchers and others in the field have identified a host of genes that contribute to the risk of developing the disease. Among the most potent genes are those in the HLA or human leukocyte antigen region, which regulate the immune system and help immune cells differentiate self from non-self.

Gene variants of DR and DQ in the HLA region are particularly important and are found in 95 percent of type 1 diabetics. Together, the genes in the HLA region account for as much as 40 percent of the familial risk of developing type1 diabetes. A second set of Type 1 diabetes susceptibility genes have also been identified in the region immediately preceding the insulin gene. This region contains a VNTR or variable number of tandem repeats, which refers to repeats of specific chemical bases that make up DNA. Inheritance of certain VNTR’s increases the risk of developing type 1 diabetes.

SUMO-4 contributes to the overall risk. However, the significance of the SUMO-4 gene lies in its role in controlling the immune and inflammatory response. The diabetes-associated variant gene appears to increase the stress response and cell death. SUMO-4 may provide a therapeutic target to modify or curtail the inflammatory process leading to the destruction of the alpha cells.

Kimberlee Barbour | EurekAlert!
Further information:
http://www.research.bcm.tmc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>