Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterning the face

20.07.2004



Vertebrates come in a dazzling array of shapes and sizes, from blue whales to pygmy bats, their overt morphology determined largely by the skeleton. The head skeleton in particular has undergone remarkable diversification, as is beautifully illustrated in Darwin’s examination of beak morphology in Galapagos finches. This week in PLoS Biology, Justin Crump, Mary Swartz, and Charles Kimmel explore the mechanism by which cell signals induce specific patterns of cartilage and bone that form the vertebrate head.

In zebrafish mutated for a gene called integrina5, the authors report, a specific region of the jaw support (hyosymplectic) cartilage fails to develop. Integrins are cell surface proteins that promote cell adhesion and signaling. Crump et al. show that Integrina5 promotes the development of an outpocketing known as the first endodermal pouch, which in turn acts as a template and helps to pattern a specific region of the hyosymplectic cartilage.

But the pouch may have more far-reaching effects. Since integrina5 mutants also have region-specific defects in cranial muscles and nerves, the first pouch may serve to organize an entire functional unit in a region of the head. As the hyosymplectic element has undergone considerable change during evolution--from a jaw-support element in fish to a tiny, sound-conducting bone called the stapes in mammals--Crump et al. speculate that such a local, interconnected strategy of development would facilitate evolution of the vertebrate head. Changes in signaling from the pouch would allow a particular skeletal element to vary in shape or size, in coordination with the muscles and nerves that move the skeletal element and independent of other regions of the head.



It will be interesting to determine, the authors note, whether this hierarchical organization applies to other skeletal elements in the head. But for now, these results will inform efforts to understand the specificity of interrelated defects seen in human craniofacial syndromes such as DiGeorge Syndrome.

Mark Patterson | EurekAlert!
Further information:
http://www.plos.org
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>