Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Mechanism For Evolution

16.07.2004


A team of researchers from the Universitat Autònoma de Barcelona (UAB) has discovered that transposons, small DNA sequences that travel through the genomes, can silence the genes adjacent to them by inducing a molecule called antisense RNA. This is a new mechanism for evolution that has been unknown until now. The research has been recently published in the journal Proceedings of the National Academy of Sciences (PNAS).


Transposons are repeated DNA sequences that move through the genomes. For a long time they have been considered as a useless part of genetic material, DNA left overs. However, it is more and more clear that transposons can cause favourable changes for the adaptation and survival of the organism.

In this research project, the UAB scientists have demonstrated that a transposon inserted in the genome of the Drosophila (a model used for a lot of genetic studies) silenced a gene adjacent to it, that is, it reduced its level of expression significantly. The expression of a gene consists in using the DNA as a mould to synthesise a molecule called a messenger RNA, which in its own environment will be used to synthesise a particular protein. According to what the researchers have seen, the transposon stimulates the synthesis of a molecule that is complementary to the normal messenger RNA. This new complementary molecule (that the scientists have called antisense RNA) joins with the normal RNA of the gene obstructing it from synthesising the protein. Even though the research has been carried out on the species Drosophila buzzatii, the researchers state that transposons, that in the human genomes represent 45% of the genetic material, could be provoking the same type of silencing effect in our species.

The work now published is a continuation of previous studies. In 1999, the research team headed by Dr. Alfredo Ruiz, from the Department of Genetics and Microbiology at the UAB, published an article in Science where they demonstrated that a chromosomal inversion in Drosophila buzzatii was generated by the transposon activity. The inversions are formed by turning a chromosome segment upside down so that it is orientated in the opposite direction. In Drosophila it has been demonstrated that the chromosomal inversions often have an adaptive value, that is, that the individuals that have chromosomes with the inversion show some advantages over those that don’t, even though it still unclear what is the mechanism used by the inversions to cause these differences.



In the case of the of Drosophila buzzatii a lot of transposons were found inserted in the break points, but only in the chromosomes with the inversion and not the normal ones (without an inversion). One of these transposons, called Kepler, is responsible for this silencing of the genetic expression, discovered recently. The fact that this transposon is present only in the chromosomes with the inversion implies that the gene is silenced only in the individuals that have these inverted chromosomes, and not in those with normal chromosomes. It is known that flies with this inversion are larger and develop over a longer period of time than the flies without the inversion. It could be, even though it is not yet proved, that these differences are caused by silencing the gene adjacent to the Kepler. If this is so, this newly discovered mechanism could explain the adaptive value of the chromosomal inversion.

The participants in the research project are Marta Puig, from the Department of Genetics and Microbiology from the UAB; Mario Cáceres, from the Department of Human Genetics from the Emory University School of Medicine in Atlanta (USA); and Alfredo Ruiz, director of the research project and in charge of the Group of Genomic, Biocomputing and Evolution (Grup de Genòmica, Bioinformàtica i Evolució) at the UAB.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>