Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Mechanism For Evolution

16.07.2004


A team of researchers from the Universitat Autònoma de Barcelona (UAB) has discovered that transposons, small DNA sequences that travel through the genomes, can silence the genes adjacent to them by inducing a molecule called antisense RNA. This is a new mechanism for evolution that has been unknown until now. The research has been recently published in the journal Proceedings of the National Academy of Sciences (PNAS).


Transposons are repeated DNA sequences that move through the genomes. For a long time they have been considered as a useless part of genetic material, DNA left overs. However, it is more and more clear that transposons can cause favourable changes for the adaptation and survival of the organism.

In this research project, the UAB scientists have demonstrated that a transposon inserted in the genome of the Drosophila (a model used for a lot of genetic studies) silenced a gene adjacent to it, that is, it reduced its level of expression significantly. The expression of a gene consists in using the DNA as a mould to synthesise a molecule called a messenger RNA, which in its own environment will be used to synthesise a particular protein. According to what the researchers have seen, the transposon stimulates the synthesis of a molecule that is complementary to the normal messenger RNA. This new complementary molecule (that the scientists have called antisense RNA) joins with the normal RNA of the gene obstructing it from synthesising the protein. Even though the research has been carried out on the species Drosophila buzzatii, the researchers state that transposons, that in the human genomes represent 45% of the genetic material, could be provoking the same type of silencing effect in our species.

The work now published is a continuation of previous studies. In 1999, the research team headed by Dr. Alfredo Ruiz, from the Department of Genetics and Microbiology at the UAB, published an article in Science where they demonstrated that a chromosomal inversion in Drosophila buzzatii was generated by the transposon activity. The inversions are formed by turning a chromosome segment upside down so that it is orientated in the opposite direction. In Drosophila it has been demonstrated that the chromosomal inversions often have an adaptive value, that is, that the individuals that have chromosomes with the inversion show some advantages over those that don’t, even though it still unclear what is the mechanism used by the inversions to cause these differences.



In the case of the of Drosophila buzzatii a lot of transposons were found inserted in the break points, but only in the chromosomes with the inversion and not the normal ones (without an inversion). One of these transposons, called Kepler, is responsible for this silencing of the genetic expression, discovered recently. The fact that this transposon is present only in the chromosomes with the inversion implies that the gene is silenced only in the individuals that have these inverted chromosomes, and not in those with normal chromosomes. It is known that flies with this inversion are larger and develop over a longer period of time than the flies without the inversion. It could be, even though it is not yet proved, that these differences are caused by silencing the gene adjacent to the Kepler. If this is so, this newly discovered mechanism could explain the adaptive value of the chromosomal inversion.

The participants in the research project are Marta Puig, from the Department of Genetics and Microbiology from the UAB; Mario Cáceres, from the Department of Human Genetics from the Emory University School of Medicine in Atlanta (USA); and Alfredo Ruiz, director of the research project and in charge of the Group of Genomic, Biocomputing and Evolution (Grup de Genòmica, Bioinformàtica i Evolució) at the UAB.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>