Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers use human antibody to cure malignant melanoma in mice

15.07.2004


Mayo Clinic researchers have manipulated a human antibody to induce an anti-tumor response in living mice that consistently curbs -- and often cures -- malignant melanoma, one of the most lethal forms of skin cancer and the most common cancer of young adults.


In the July 15 edition of Cancer Research Mayo researchers report three innovative discoveries that advance the emerging field of cancer immunotherapy. Cancer immunotherapy refers to scientist-controlled manipulations of the immune system to kill cancer cells without the toxic side effects of chemotherapy or radiation. These findings show that when administered intravenously, the human antibody can still induce immune response -- which suits it for potential therapeutic use as a drug for humans.

"What this current work demonstrates is that by using this antibody we can train the immune response to strike a new target," says Larry Pease, Ph.D., Mayo Clinic immunologist and lead investigator of the study.

The Discoveries



A novel way to fight cancer with the immune system

Treating live mice intravenously with a human antibody stimulates components of the immune system known as dendritic cells, which, in turn, changes the way dendritic cells interact with the T cells of the immune system. The result: a consistently strong -- and often curative -- treatment effect for malignant melanoma, a cancer that is newly diagnosed in approximately 51,000 people in the U.S. annually, and claims more than 7,000 lives a year in the United States.

New approach works to kill cancer in mice

The researchers created an anti-tumor immune response where none existed in nature. Under normal conditions dendritic cells are key players in initiating select immune responses -- responding to malignant melanoma just doesn’t happen to be among them. Mayo Clinic researchers changed that. They trained T cells to seek and destroy malignant melanoma by inducing activity of dendritic cells by "cross-linking" structures on their cell surface. Cross-linking is a molecular manipulation that can stimulate cells.

Effectiveness

In the investigation, one group of mice was treated intravenously with the experimental cross-linking antibody therapy, and two control groups were treated with known antibodies that do not prompt cross-linking structures containing B7-DC. All groups had malignant melanoma tumors transplanted into them. They were then examined 17 days later for evidence of tumor growth.

Results showed that in the two control groups, only one of 26 (less than 4 percent) were tumor free. By contrast, 11 of 16 mice -- 69 percent -- were tumor free in the group receiving the experimental antibody treatment. In addition, the few mice in this group that did develop tumors experienced significantly inhibited tumor growth compared to controls.

In a second line of investigation animals received intravenous transplants of tumors that seeded their lungs with dozens of discrete foci of melanoma, modeling what happens during lung metastasis. After three days, some of these animals were treated with the B7-DC cross-linking antibody or a control antibody. They were evaluated for tumor growth when their untreated counterparts had developed more than 50 tumor nodules in their lungs.

Forty-eight percent of the animals (14 of 29) that received B7-DC cross-linking antibody treatments were tumor free when the experiments were ended three to four weeks after tumor engraftment. In contrast, all the mice that received control antibodies developed large numbers of tumors in their lungs. Furthermore, all of the 52 percent of animals that developed melanoma lung nodules developed substantially fewer tumors relative to the animals receiving irrelevant antibody, showing that treatment with B7-DC cross-linking antibody had a strong treatment effect even when animals were not completely cured.

Distinct from previous methods

The data reveal a dramatic improvement in anti-tumor abilities of dendritic cells stimulated with this human antibody. Following treatment the dendritic cells behaved differently when compared to dendritic cells stimulated by established methods.

"Essentially, we are inducing an immune response against a tumor where an immune response isn’t normally happening," says Dr. Pease. "The human antibody induces strong tumor immunity when administered and without further interventions -- even after tumors are already established. This is an important milestone for any cancer therapy that will be useful for treating patients."

In addition to Dr. Pease, the coauthors of the article include: Suresh Radhakrishnan, Ph.D.; Loc Tan Nguyen; Bogoljub Ciric; Dallas Flies; Virginia P. Van Keulen; Koji Tamada; Lieping Chen and Moses Rodriguez, M.D. Their work was supported by grants from The Ralph C. Wilson, Sr., and Ralph C. Wilson, Jr., Medical Research Foundation, the Mayo Clinic Comprehensive Cancer Center and the National Cancer Institute of the National Institutes of Health.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://cancerres.aacrjournals.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>