Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gene Selection Method Helps To Achieve Improved Data Quality

09.07.2004


Current microarray experiments allow the levels of activity of thousands of genes to be measured at once, providing a window into molecular events underlying health and disease. The selection of genes having distinct levels of activity between conditions of interest (such as cancer and non-cancer) has therefore emerged as a key aim of data analysis. However, with typically many thousands of genes to choose from and at most a few dozen sets of measurements available, differential analyses of this kind are extremely challenging. Different statistical tests yield different results due to their underlying assumptions, but on real data it is usually impossible to tell which method is likely to be right.



Researchers at the University of Oxford have developed a new method that is able of provide a consistency measure for such tests. It is capable of assessing the effectiveness of each algorithm for particular data and it can be further utilised to learn how to produce an effective statistical method for testing the given data.

The new method has many distinct advantages and benefits in comparison with existing methods for screening. One of the main advantages is that it is able to assess statistical algorithms by selecting custom algorithms from data using a notion of consistency. The technique, which is extremely robust, helps to reduce the risk of choosing an inappropriate algorithm. This helps to minimise errors and therefore lead to significant potential reduction in the cost of producing data.


Although the most important application for this technique and the main reason that it was developed is that it can be used for highlighting genes responsible for disease, apart from other bioinformatic applications, the method is also suitable for use in identifying buying patterns from consumer records data and information retrieval from databases.

This work is patent application protected. Anybody interested in obtaining further information about this technology should contact Isis Innovation Ltd.

Kim Bruty | alfa
Further information:
http://www.isis-innovation.com
http://www.ox.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>