Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Access to DNA secrets yields better understanding of genes, possible tool for disease diagnosis

08.07.2004


A new technique for examining DNA is giving scientists a more detailed picture of which genes have the propensity for activation, offering a new tool for understanding how genes function and possibly for diagnosing disease.

The technology, called a chromatin array, was developed by researchers at UT Southwestern Medical Center at Dallas and is described in the July issue of the journal Genome Research.

DNA, which contains the genetic instructions needed to make a human or any other life form, is a long molecule that is tightly compacted in a cell’s nucleus. Various pieces of DNA are constantly being compressed and expanded like the folds of an accordion as a cell responds to its changing needs.



When the DNA relaxes, or expands, proteins called transcription factors gain access to the genetic code to "read" its instructions for making a molecule called RNA, which in turn makes other proteins that carry out life’s essential functions, from immune response and muscle contraction to cholesterol and hormone regulation.

When DNA is highly compacted, like a closed accordion, it’s not as accessible to transcription proteins, and cannot make RNA, said Dr. Harold "Skip" Garner, professor of biochemistry and internal medicine at UT Southwestern and senior author of the study.

Using the chromatin array, UT Southwestern researchers can detect the relative compactness of several stretches of DNA at a time with very high resolution, allowing them to determine which genes have the propensity for making RNA. They found that for many genes, but not all, the more open the DNA is, the more RNA is produced.

"The interesting genes are the ones that don’t behave this way," Dr. Garner said.

Exactly what controls compaction and expansion of DNA is still under scientific debate. In their next set of experiments, Dr. Garner and his team will apply various drugs – such as those used in cancer therapy – to cells in order to understand if and how these drugs affect DNA compaction. Such studies might lead to therapies aimed at activating beneficial genes, or turning off faulty ones.

The researchers also will investigate whether certain compaction and expansion states might be indicative of cancer or other diseases.
"Our current study describes the platform technology necessary to try to understand larger questions," Dr. Garner said. "The next step will involve using the technique to look at different types of cancer cells to see whether this type of assay could be a diagnostic tool."

Other techniques have be used to examine the compactness of DNA, but only a small piece of DNA at a time, said Ryan Weil, a UT Southwestern biophysics graduate student and the study’s lead author. "One of the advantages of our array is that it sorts through lots of pieces of DNA and gives us information about each segment all at once."

Currently, scientists determine which genes are turned on, or expressed, in a cell by extracting RNA and measuring how much of it is being produced for each gene. An RNA microarray, or "gene chip," is the standard equipment used to measure RNA expression levels.
"Only a small fraction of genes are making sufficient RNA to be detected with RNA microarrays," said Dr. Garner. "Many of the genes that make very small quantities of RNA are nonetheless very important, but they fall below the threshold of detection for current techniques."

The UT Southwestern technique allows researchers to study genes that previously weren’t accessible because there was not enough RNA to make a measurement of their activity.

"We can get information on a much larger number of genes, and whether or not they are in a state in which they can make RNA, using this technique than by using traditional RNA microarrays," Dr. Garner said. "This technology can tell us not only whether the DNA for a given gene is present or not, but also whether it is compacted or expanded and therefore ready to make RNA."

Mr. Weil said, "We can tell not just what cells are doing now, but what they could do in the future."

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>