Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Team Determines Cellular Stress Within Body Is Critical Component of Cell Growth & Immune Response

07.07.2004


Researchers at the University of California, San Diego (UCSD) School of Medicine have determined that a particular type of cellular stress called osmotic stress is of critical importance to cell growth and the body’s immune response against infection. The findings may have implications for autoimmune disorders, transplant rejections, and potential cancer therapies.



Published in the online edition of the Proceedings of the National Academy of Sciences (PNAS) the week of July 5, 2004, the research in mice provided the first proof that a specific transcription factor, a gene that acts as an “on-off” switch, is essential for normal cell proliferation under conditions of osmotic stress and is also necessary for the body’s immune response to invading pathogens.

Osmotic stress occurs when the concentration of molecules in solution outside of the cell is different than that inside the cell. When this happens, water flows either into or out of the cell by osmosis, thereby altering the intracellular environment. Hyperosmotic stress causes water to diffuse out of the cell, resulting in cell shrinkage, which can lead to DNA and protein damage, cell cycle arrest, and ultimately cell death. Cells compensate or adapt to osmotic stress by activating an osmotic stress response pathway that is controlled by a gene called nuclear factor of activated T cells 5 (NFAT5)/tonicity enhancer binding protein (TonEBP). This NFAT5/TonEBP protein is the only known mammalian transcription factor that is activated by hyperosmotic stress.


Steffan N. Ho, M.D., Ph.D., a UCSD assistant professor of pathology and senior author of the paper in PNAS, noted that the findings bring to light new possibilities in the development of drugs to treat autoimmune diseases, transplant rejection and cancer.

“We are particularly excited about the implications of our findings to cancer cell biology,” Ho said. “The tissue microenvironment of tumors is unique because the unregulated growth of malignant cells does not allow for the normal development of blood and lymph vessels within the tumor, which could contribute to osmotic stress. If the growth of cancer cells in the body requires a means to adapt to osmotic stress, this stress response pathway would represent an exciting new target for the identification of anticancer drugs.”

In describing his team’s research, Ho said that it was previously thought that the kidney was the only tissue in the body that was subject to osmotic stress. The kidney controls how much water and salt is in our blood using a mechanism that results in very high levels of osmotic stress within certain areas of the kidney.

“As immunologists, we were at first rather puzzled when we found that a protein that was thought to help cells of the kidney adapt to osmotic stress was also expressed in tissues of the immune system,” Ho said. “There was no prior evidence that cells of the immune system or any other cell outside the kidney, for that matter, were exposed to significant osmotic stress in the body.”

One of the difficulties in studying the stresses that cells are exposed to within the body is the nearly impossible task of accurately recreating, in the laboratory, the complexities of a tissue with its unique microenvironment as it exists in vivo. To investigate osmotic stress, the Ho team generated mice that expressed a defective form of the NFAT5/TonEBP protein, and found that the mice had an impaired immune response; their cells were unable to grow when exposed to osmotic stress.

“We now think that the very process of cell proliferation within a tissue microenvironment exposes the cell to osmotic stress,” Ho said. “If the cell can’t adapt to that osmotic stress, it won’t be able to grow. The immune system is especially dependent on this osmotic stress response because in order to successfully overcome infection by viruses or bacteria, the cells of the immune system must proliferate very rapidly.”

The studies were supported by a grant from the National Institutes of Health, with shared core facility resources supported by a grant from the National Cancer Institute. In addition to Ho, the paper’s authors included first author William Y. Go, a student in the UCSD M.D./Ph.D. Medical Scientist Training Program; and co-authors Xuebin Liu, M.D., Ph.D., Michelle A. Roti, B.A., and Forrest Liu, M.D.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu

More articles from Life Sciences:

nachricht Cleaning up? Not without helpers
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht How Obesity Promotes Breast Cancer
20.10.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>