Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Team Determines Cellular Stress Within Body Is Critical Component of Cell Growth & Immune Response

07.07.2004


Researchers at the University of California, San Diego (UCSD) School of Medicine have determined that a particular type of cellular stress called osmotic stress is of critical importance to cell growth and the body’s immune response against infection. The findings may have implications for autoimmune disorders, transplant rejections, and potential cancer therapies.



Published in the online edition of the Proceedings of the National Academy of Sciences (PNAS) the week of July 5, 2004, the research in mice provided the first proof that a specific transcription factor, a gene that acts as an “on-off” switch, is essential for normal cell proliferation under conditions of osmotic stress and is also necessary for the body’s immune response to invading pathogens.

Osmotic stress occurs when the concentration of molecules in solution outside of the cell is different than that inside the cell. When this happens, water flows either into or out of the cell by osmosis, thereby altering the intracellular environment. Hyperosmotic stress causes water to diffuse out of the cell, resulting in cell shrinkage, which can lead to DNA and protein damage, cell cycle arrest, and ultimately cell death. Cells compensate or adapt to osmotic stress by activating an osmotic stress response pathway that is controlled by a gene called nuclear factor of activated T cells 5 (NFAT5)/tonicity enhancer binding protein (TonEBP). This NFAT5/TonEBP protein is the only known mammalian transcription factor that is activated by hyperosmotic stress.


Steffan N. Ho, M.D., Ph.D., a UCSD assistant professor of pathology and senior author of the paper in PNAS, noted that the findings bring to light new possibilities in the development of drugs to treat autoimmune diseases, transplant rejection and cancer.

“We are particularly excited about the implications of our findings to cancer cell biology,” Ho said. “The tissue microenvironment of tumors is unique because the unregulated growth of malignant cells does not allow for the normal development of blood and lymph vessels within the tumor, which could contribute to osmotic stress. If the growth of cancer cells in the body requires a means to adapt to osmotic stress, this stress response pathway would represent an exciting new target for the identification of anticancer drugs.”

In describing his team’s research, Ho said that it was previously thought that the kidney was the only tissue in the body that was subject to osmotic stress. The kidney controls how much water and salt is in our blood using a mechanism that results in very high levels of osmotic stress within certain areas of the kidney.

“As immunologists, we were at first rather puzzled when we found that a protein that was thought to help cells of the kidney adapt to osmotic stress was also expressed in tissues of the immune system,” Ho said. “There was no prior evidence that cells of the immune system or any other cell outside the kidney, for that matter, were exposed to significant osmotic stress in the body.”

One of the difficulties in studying the stresses that cells are exposed to within the body is the nearly impossible task of accurately recreating, in the laboratory, the complexities of a tissue with its unique microenvironment as it exists in vivo. To investigate osmotic stress, the Ho team generated mice that expressed a defective form of the NFAT5/TonEBP protein, and found that the mice had an impaired immune response; their cells were unable to grow when exposed to osmotic stress.

“We now think that the very process of cell proliferation within a tissue microenvironment exposes the cell to osmotic stress,” Ho said. “If the cell can’t adapt to that osmotic stress, it won’t be able to grow. The immune system is especially dependent on this osmotic stress response because in order to successfully overcome infection by viruses or bacteria, the cells of the immune system must proliferate very rapidly.”

The studies were supported by a grant from the National Institutes of Health, with shared core facility resources supported by a grant from the National Cancer Institute. In addition to Ho, the paper’s authors included first author William Y. Go, a student in the UCSD M.D./Ph.D. Medical Scientist Training Program; and co-authors Xuebin Liu, M.D., Ph.D., Michelle A. Roti, B.A., and Forrest Liu, M.D.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>