Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That’s not my hand! How the brain can be fooled into feeling a fake limb

02.07.2004


Scientists have made the first recordings of the human brain’s awareness of its own body, using the illusion of a strategically-placed rubber hand to trick the brain. Their findings shed light on disorders of self-perception such as schizophrenia, stroke and phantom limb syndrome, where sufferers may no longer recognize their own limbs or may experience pain from missing ones.



In the study published today in Science Express online, University College London’s (UCL) Dr Henrik Ehrsson, working with Oxford University psychologists, manipulated volunteers’ perceptions of their own body via three different senses - vision, touch and proprioception (position sense).

They found that one area of the brain, the premotor cortex, integrates information from these different senses to recognize the body. However, because vision tends to dominate, if information from the senses is inconsistent, the brain “believes” the visual information over the proprioceptive. Thus, someone immersed in an illusion would feel, for example, that a fake limb was part of their own body.


In the study, each volunteer hid their right hand beneath a table while a rubber hand was placed in front of them at an angle suggesting the fake hand was part of their body. Both the rubber hand and hidden hand were simultaneously stroked with a paintbrush while the volunteer’s brain was scanned using functional magnetic resonance imaging.

On average, it took volunteers 11 seconds to start experiencing that the rubber hand was their own. The stronger this feeling, the greater the activity recorded in the premotor cortex.

After the experiment, volunteers were asked to point towards their right hand. Most reached in the wrong direction, pointing towards the rubber hand instead of the real hidden one, providing further evidence of the brain’s re-adjustment.

Dr Henrik Ehrsson says: “The feeling that our bodies belong to ourselves is a fundamental part of human consciousness, yet there are surprisingly few studies of awareness of one’s own body.”

“Distinguishing oneself from the environment is a critical, everyday problem that has to be solved by the central nervous system of all animals. If the distinction fails the animal might try to feed on itself and will not be able to plan actions that involve both body parts and external objects, such as a monkey reaching for a banana.

This study shows that the brain distinguishes the self from the non-self by comparing information from the different senses. In a way you could argue that the bodily self is an illusion being constructed in the brain.”

Disorders such as schizophrenia and stroke often involve impaired self-perception where, for example, a woman might try to throw her left leg out of bed every morning because she believes the leg belongs to someone else. Misidentification or unawareness of a limb arising from damage to the premotor cortex from a stroke is not uncommon.

Phantom limb syndrome is a disorder which can arise after amputation. Remedies that trick the brain into believing the limb has been replaced, for example by using a mirror to reflect the opposite healthy limb onto the amputated limb, exploit the brain’s mechanism of self-perception.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>