Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That’s not my hand! How the brain can be fooled into feeling a fake limb

02.07.2004


Scientists have made the first recordings of the human brain’s awareness of its own body, using the illusion of a strategically-placed rubber hand to trick the brain. Their findings shed light on disorders of self-perception such as schizophrenia, stroke and phantom limb syndrome, where sufferers may no longer recognize their own limbs or may experience pain from missing ones.



In the study published today in Science Express online, University College London’s (UCL) Dr Henrik Ehrsson, working with Oxford University psychologists, manipulated volunteers’ perceptions of their own body via three different senses - vision, touch and proprioception (position sense).

They found that one area of the brain, the premotor cortex, integrates information from these different senses to recognize the body. However, because vision tends to dominate, if information from the senses is inconsistent, the brain “believes” the visual information over the proprioceptive. Thus, someone immersed in an illusion would feel, for example, that a fake limb was part of their own body.


In the study, each volunteer hid their right hand beneath a table while a rubber hand was placed in front of them at an angle suggesting the fake hand was part of their body. Both the rubber hand and hidden hand were simultaneously stroked with a paintbrush while the volunteer’s brain was scanned using functional magnetic resonance imaging.

On average, it took volunteers 11 seconds to start experiencing that the rubber hand was their own. The stronger this feeling, the greater the activity recorded in the premotor cortex.

After the experiment, volunteers were asked to point towards their right hand. Most reached in the wrong direction, pointing towards the rubber hand instead of the real hidden one, providing further evidence of the brain’s re-adjustment.

Dr Henrik Ehrsson says: “The feeling that our bodies belong to ourselves is a fundamental part of human consciousness, yet there are surprisingly few studies of awareness of one’s own body.”

“Distinguishing oneself from the environment is a critical, everyday problem that has to be solved by the central nervous system of all animals. If the distinction fails the animal might try to feed on itself and will not be able to plan actions that involve both body parts and external objects, such as a monkey reaching for a banana.

This study shows that the brain distinguishes the self from the non-self by comparing information from the different senses. In a way you could argue that the bodily self is an illusion being constructed in the brain.”

Disorders such as schizophrenia and stroke often involve impaired self-perception where, for example, a woman might try to throw her left leg out of bed every morning because she believes the leg belongs to someone else. Misidentification or unawareness of a limb arising from damage to the premotor cortex from a stroke is not uncommon.

Phantom limb syndrome is a disorder which can arise after amputation. Remedies that trick the brain into believing the limb has been replaced, for example by using a mirror to reflect the opposite healthy limb onto the amputated limb, exploit the brain’s mechanism of self-perception.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>