Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating master molecule shown to disrupt vascular environment for tumors in animal models

16.06.2004


Targeting a master molecule that helps cancer cells survive when blood oxygen levels are low may offer a potentially powerful strategy for blocking tumor growth, say researchers at The University of Texas M. D. Anderson Cancer Center.



The molecule, "hypoxia-inducible factor 1," or HIF-1, controls production of a number of other proteins, such as vascular endothelial growth factor (VEGF), which work in concert to help nurture these stressed cancer cells. Researchers show that genetically jamming HIF-1 damages the vascular microenvironment and impairs tumor growth, according to the study, published in the June 16th issue of Journal of the National Cancer Institute.

The resarchers found, for example, that while new blood vessels will still grow in tumors when HIF-1 is blocked, the blood vessels were small, with thin walls, and no lumen -- the passage through which blood flows. The tumors were only about 1/10th the size of cancerous masses seen in a group of control mice.


Although the researchers caution that their study was conducted only in animals, they say the findings are of note because HIF-1, as a master molecule, could prove to be a target for anti-cancer drugs.

"We have shown, genetically, that inhibiting HIF-1 significantly impairs tumor growth, so it seems that targeting HIF-1 might offer a great deal of promise in regulating the growth of solid tumors," says the study’s senior author, Lee Ellis, M.D., a professor in the Departments of Surgical Oncology and Cancer Biology at M. D. Anderson.

The value of inhibiting this "angiogenic" pathway has already been shown in federal approval of the drug Avastin, an antibody that binds VEGF and prevents its effect on angiogenesis. But there are no drugs currently available or in testing that specifically target HIF-1, Ellis says, so clinical validation of these findings in patients will probably be years away.

"The next step in the process is to seek or develop agents that specifically target HIF-1; until then, this work is limited to animal models," he says.

The study focused on HIF-1’s role in gastric (stomach) cancer, but the master molecule is believed to play a role in growth and metastasis of colon, pancreatic and other cancers, and is directly associated with development of renal cell carcinoma, says Ellis.

Cells continually produce HIF-1 proteins, but they are quickly degraded if the cell is healthy, receiving a sufficient supply of oxygen. If the cell become hypoxic (lacking oxygen), HIF-1 is not destroyed. It binds with a partner protein and moves into the cell’s nucleus, where it turns on a large number of genes that help support the cell in a relatively caustic environment "of low oxygen and nutrients, and increased acidity," says Ellis. "When cells grow faster than blood vessels, such as when cancer develops and there is not enough oxygen and glucose around, HIF-1 becomes active, pushing the growth of new blood vessels."

In the study, the researchers conducted a series of both cell culture and mouse experiments; previous studies conducted in one or the other system have been contradictory. They transferred a gene into human gastric cancer cells that would not allow HIF-1 to initiate gene activation in the cell nucleus, and then found that in hypoxic conditions, VEGF secretion was not increased, showing that HIF-1 controlled VEGF levels.

They then conducted animal studies, including one in which the altered cancer cells were injected into the stomach wall. Gastric tumors grew in both a control group and in the experimental group of animals. At 22 days, tumors growing in the experimental group, in cells that expressed low levels of HIF-1, were significantly smaller than those growing in the control group.

"We were able to markedly inhibit tumor growth, and we also found something interesting," says Ellis. "The number of blood vessels between the groups was unchanged, yet in experimental mice, the vessels were smaller, and without a lumen. They didn’t appear to be able to remain open. They were not ’good’ vessels."

The investigators evaluated the structure of these altered vessels and found they didn’t contain many pericytes. Normal blood vessels have endothelial cells surrounded by pericytes, which provide structurally rigidity and also modulate endothelial cell survival. "We found that the endothelial cells had little pericyte coverage in tumors with decreased HIF-1 activity, suggesting that HIF-1 not only regulates molecules that mediate endothelial cell function, but also pericyte function," Ellis says.

These results suggest that HIF-1 not only regulates VEGF expression in cancer cells, he says, "but also contributes to the formation of a complex proangiogenic microenvironment in tumors, affecting both the structure and function of blood vessels."


The study was supported by grants from the National Institutes of Health. Co-authors include, from M. D. Anderson’s Department of Cancer Biology: Oliver Stoeltzing, M.D., Fan Fan, BS, Weinbiao Liu, M.D., and Anna Belcheva, M.D.; from M. D. Anderson’s Department of Surgical Oncology: Marya McCarty, Ph.D., and Jane Wey, M.D. Another co-author, Gregg Semenza, M.D., Ph.D., at the Johns Hopkins University School of Medicine, is a leading expert on HIF-1 research.

Laura Sussman | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>