Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating master molecule shown to disrupt vascular environment for tumors in animal models

16.06.2004


Targeting a master molecule that helps cancer cells survive when blood oxygen levels are low may offer a potentially powerful strategy for blocking tumor growth, say researchers at The University of Texas M. D. Anderson Cancer Center.



The molecule, "hypoxia-inducible factor 1," or HIF-1, controls production of a number of other proteins, such as vascular endothelial growth factor (VEGF), which work in concert to help nurture these stressed cancer cells. Researchers show that genetically jamming HIF-1 damages the vascular microenvironment and impairs tumor growth, according to the study, published in the June 16th issue of Journal of the National Cancer Institute.

The resarchers found, for example, that while new blood vessels will still grow in tumors when HIF-1 is blocked, the blood vessels were small, with thin walls, and no lumen -- the passage through which blood flows. The tumors were only about 1/10th the size of cancerous masses seen in a group of control mice.


Although the researchers caution that their study was conducted only in animals, they say the findings are of note because HIF-1, as a master molecule, could prove to be a target for anti-cancer drugs.

"We have shown, genetically, that inhibiting HIF-1 significantly impairs tumor growth, so it seems that targeting HIF-1 might offer a great deal of promise in regulating the growth of solid tumors," says the study’s senior author, Lee Ellis, M.D., a professor in the Departments of Surgical Oncology and Cancer Biology at M. D. Anderson.

The value of inhibiting this "angiogenic" pathway has already been shown in federal approval of the drug Avastin, an antibody that binds VEGF and prevents its effect on angiogenesis. But there are no drugs currently available or in testing that specifically target HIF-1, Ellis says, so clinical validation of these findings in patients will probably be years away.

"The next step in the process is to seek or develop agents that specifically target HIF-1; until then, this work is limited to animal models," he says.

The study focused on HIF-1’s role in gastric (stomach) cancer, but the master molecule is believed to play a role in growth and metastasis of colon, pancreatic and other cancers, and is directly associated with development of renal cell carcinoma, says Ellis.

Cells continually produce HIF-1 proteins, but they are quickly degraded if the cell is healthy, receiving a sufficient supply of oxygen. If the cell become hypoxic (lacking oxygen), HIF-1 is not destroyed. It binds with a partner protein and moves into the cell’s nucleus, where it turns on a large number of genes that help support the cell in a relatively caustic environment "of low oxygen and nutrients, and increased acidity," says Ellis. "When cells grow faster than blood vessels, such as when cancer develops and there is not enough oxygen and glucose around, HIF-1 becomes active, pushing the growth of new blood vessels."

In the study, the researchers conducted a series of both cell culture and mouse experiments; previous studies conducted in one or the other system have been contradictory. They transferred a gene into human gastric cancer cells that would not allow HIF-1 to initiate gene activation in the cell nucleus, and then found that in hypoxic conditions, VEGF secretion was not increased, showing that HIF-1 controlled VEGF levels.

They then conducted animal studies, including one in which the altered cancer cells were injected into the stomach wall. Gastric tumors grew in both a control group and in the experimental group of animals. At 22 days, tumors growing in the experimental group, in cells that expressed low levels of HIF-1, were significantly smaller than those growing in the control group.

"We were able to markedly inhibit tumor growth, and we also found something interesting," says Ellis. "The number of blood vessels between the groups was unchanged, yet in experimental mice, the vessels were smaller, and without a lumen. They didn’t appear to be able to remain open. They were not ’good’ vessels."

The investigators evaluated the structure of these altered vessels and found they didn’t contain many pericytes. Normal blood vessels have endothelial cells surrounded by pericytes, which provide structurally rigidity and also modulate endothelial cell survival. "We found that the endothelial cells had little pericyte coverage in tumors with decreased HIF-1 activity, suggesting that HIF-1 not only regulates molecules that mediate endothelial cell function, but also pericyte function," Ellis says.

These results suggest that HIF-1 not only regulates VEGF expression in cancer cells, he says, "but also contributes to the formation of a complex proangiogenic microenvironment in tumors, affecting both the structure and function of blood vessels."


The study was supported by grants from the National Institutes of Health. Co-authors include, from M. D. Anderson’s Department of Cancer Biology: Oliver Stoeltzing, M.D., Fan Fan, BS, Weinbiao Liu, M.D., and Anna Belcheva, M.D.; from M. D. Anderson’s Department of Surgical Oncology: Marya McCarty, Ph.D., and Jane Wey, M.D. Another co-author, Gregg Semenza, M.D., Ph.D., at the Johns Hopkins University School of Medicine, is a leading expert on HIF-1 research.

Laura Sussman | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>